The method of electromagnetic field with the given wavefront calculation
Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 109-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical method for solution of three-dimensional Maxwell's equations with initial data on a characteristic surface is represented. The implicit completely conservative difference scheme is constructed. The algorithm of solution of mesh equations is proposed. The results of calculation of electromagnetic field, which is generated by the given time-depended current density distribution in the region with discontinuous conductivity, are represented. The comparison of results of calculation by the presented method and with help of the explicit difference scheme in laboratory time is cited.
Keywords: numerical methods, difference scheme, electrodynamics, iteration methods.
Mots-clés : sparse matrix
@article{MM_2011_23_3_a9,
     author = {A. V. Berezin and A. A. Kryukov and B. D. Plyushchenkov},
     title = {The method of electromagnetic field with the given wavefront calculation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--126},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_3_a9/}
}
TY  - JOUR
AU  - A. V. Berezin
AU  - A. A. Kryukov
AU  - B. D. Plyushchenkov
TI  - The method of electromagnetic field with the given wavefront calculation
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 109
EP  - 126
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_3_a9/
LA  - ru
ID  - MM_2011_23_3_a9
ER  - 
%0 Journal Article
%A A. V. Berezin
%A A. A. Kryukov
%A B. D. Plyushchenkov
%T The method of electromagnetic field with the given wavefront calculation
%J Matematičeskoe modelirovanie
%D 2011
%P 109-126
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_3_a9/
%G ru
%F MM_2011_23_3_a9
A. V. Berezin; A. A. Kryukov; B. D. Plyushchenkov. The method of electromagnetic field with the given wavefront calculation. Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 109-126. http://geodesic.mathdoc.fr/item/MM_2011_23_3_a9/

[1] Roshan P., Lieri Dzh., Osnovy postroeniya besprovodnykh lokalnykh setei standarta 802.11, Izdatelskii dom “Vilyams”, M., 2004

[2] Chernov L. A., Rasprostranenie voln v srede so sluchainymi neodnorodnostyami, 1958, M.

[3] Frank F., Mizes R., Differentsialnye i integralnye uravneniya matematicheskoi fiziki, v. 2, ONTI, M., 1937

[4] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994

[5] Boris J. P., Book D. L., “Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works”, J. Comp. Phys., 11:1 (1973), 38–69 ; “Flux-corrected transport. II. Generalizations of the method”, 18:3 (1975), 248–283 ; Boris Dzh. P., Buk D. L., “Vychislitelnye metody v fizike. Upravlyaemyi termoyadernyi sintez”, Reshenie uravneniya nepreryvnosti metodom korrektsii potokov, 1980, M., gl. 3 | DOI | Zbl | DOI | Zbl

[6] Turchaninov V. I., Chislennaya metodika resheniya trekhmernykh uravnenii Maksvella v sfericheskikh peremennykh v neodnorodnoi srede s vydeleniem perednego fronta, preprint No 18, IPM im. M. V. Keldysha RAN, M., 1993 | MR

[7] Berezin A. V., Vorontsov A. S., Markov M. B., Plyuschenkov B. D., “O vyvode i reshenii uravnenii Maksvella v zadachakh s zadannym volnovym frontom”, Matematicheskoe modelirovanie, 18:4 (2006), 43–60 | MR | Zbl

[8] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[9] Stepanov V. V., Kurs differentsialnykh uravnenii, Fizmatgiz, M., 1959

[10] Plyuschenkov B. D., O postroenii chislennogo algoritma rascheta elektromagnitnogo polya ot nestatsionarnogo tochechnogo istochnika gamma-kvantov, raspolozhennogo nad poverkhnostyu provodyaschei sredy, v tsilindricheskikh koordinatakh, preprint No 138, IPM im. M. V. Keldysha AN SSSR, M., 1985

[11] Berezin A. V., Markov M. B., Plyuschenkov B. D., Lokalno-odnomernaya raznostnaya skhema dlya elektrodinamicheskikh zadach s zadannym volnovym frontom, preprint No 31, IPM im. M. V. Keldysha RAN, M., 2005

[12] Berezin A. V., Kryukov A. A., Plyuschenkov B. D., Neyavnaya raznostnaya skhema dlya resheniya uravnenii Maksvella, preprint No 40, IPM im. M. V. Keldysha RAN, M., 2009

[13] Tamm I. E., Osnovy teorii elektrichestva, Nauka, M., 1989

[14] Ryabenkii V. S., Metod raznostnykh potentsialov i ego prilozheniya, Fizmatlit, M., 2002

[15] Wang T., Tang X., “Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach”, GEOPHYSICS, 68:5 (2003), 1749–1755 | DOI

[16] Balandin M. Yu., Shurina E. P., Metody resheniya SLAU bolshoi razmernosti, NGTU, Novosibirsk, 2000

[17] Saad Y., Iterative methods for sparse linear systems, 2 ed., 2000

[18] Esterbyu O., Zlatev Z., Pryamye metody dlya razrezhennykh matrits, Mir, M., 1987 | MR

[19] University of Minnesota, Department of Computer Science and Engineering, Ofitsialnyi sait http://www-users.cs.umn.edu/~saad/software/SPARSKIT/

[20] BLAS, Ofitsialnyi sait biblioteki standartnykh funktsii lineinoi algebry http://www.netlib.org/blas/