Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_3_a9, author = {A. V. Berezin and A. A. Kryukov and B. D. Plyushchenkov}, title = {The method of electromagnetic field with the given wavefront calculation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {109--126}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_3_a9/} }
TY - JOUR AU - A. V. Berezin AU - A. A. Kryukov AU - B. D. Plyushchenkov TI - The method of electromagnetic field with the given wavefront calculation JO - Matematičeskoe modelirovanie PY - 2011 SP - 109 EP - 126 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_3_a9/ LA - ru ID - MM_2011_23_3_a9 ER -
%0 Journal Article %A A. V. Berezin %A A. A. Kryukov %A B. D. Plyushchenkov %T The method of electromagnetic field with the given wavefront calculation %J Matematičeskoe modelirovanie %D 2011 %P 109-126 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2011_23_3_a9/ %G ru %F MM_2011_23_3_a9
A. V. Berezin; A. A. Kryukov; B. D. Plyushchenkov. The method of electromagnetic field with the given wavefront calculation. Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 109-126. http://geodesic.mathdoc.fr/item/MM_2011_23_3_a9/
[1] Roshan P., Lieri Dzh., Osnovy postroeniya besprovodnykh lokalnykh setei standarta 802.11, Izdatelskii dom “Vilyams”, M., 2004
[2] Chernov L. A., Rasprostranenie voln v srede so sluchainymi neodnorodnostyami, 1958, M.
[3] Frank F., Mizes R., Differentsialnye i integralnye uravneniya matematicheskoi fiziki, v. 2, ONTI, M., 1937
[4] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994
[5] Boris J. P., Book D. L., “Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works”, J. Comp. Phys., 11:1 (1973), 38–69 ; “Flux-corrected transport. II. Generalizations of the method”, 18:3 (1975), 248–283 ; Boris Dzh. P., Buk D. L., “Vychislitelnye metody v fizike. Upravlyaemyi termoyadernyi sintez”, Reshenie uravneniya nepreryvnosti metodom korrektsii potokov, 1980, M., gl. 3 | DOI | Zbl | DOI | Zbl
[6] Turchaninov V. I., Chislennaya metodika resheniya trekhmernykh uravnenii Maksvella v sfericheskikh peremennykh v neodnorodnoi srede s vydeleniem perednego fronta, preprint No 18, IPM im. M. V. Keldysha RAN, M., 1993 | MR
[7] Berezin A. V., Vorontsov A. S., Markov M. B., Plyuschenkov B. D., “O vyvode i reshenii uravnenii Maksvella v zadachakh s zadannym volnovym frontom”, Matematicheskoe modelirovanie, 18:4 (2006), 43–60 | MR | Zbl
[8] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[9] Stepanov V. V., Kurs differentsialnykh uravnenii, Fizmatgiz, M., 1959
[10] Plyuschenkov B. D., O postroenii chislennogo algoritma rascheta elektromagnitnogo polya ot nestatsionarnogo tochechnogo istochnika gamma-kvantov, raspolozhennogo nad poverkhnostyu provodyaschei sredy, v tsilindricheskikh koordinatakh, preprint No 138, IPM im. M. V. Keldysha AN SSSR, M., 1985
[11] Berezin A. V., Markov M. B., Plyuschenkov B. D., Lokalno-odnomernaya raznostnaya skhema dlya elektrodinamicheskikh zadach s zadannym volnovym frontom, preprint No 31, IPM im. M. V. Keldysha RAN, M., 2005
[12] Berezin A. V., Kryukov A. A., Plyuschenkov B. D., Neyavnaya raznostnaya skhema dlya resheniya uravnenii Maksvella, preprint No 40, IPM im. M. V. Keldysha RAN, M., 2009
[13] Tamm I. E., Osnovy teorii elektrichestva, Nauka, M., 1989
[14] Ryabenkii V. S., Metod raznostnykh potentsialov i ego prilozheniya, Fizmatlit, M., 2002
[15] Wang T., Tang X., “Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach”, GEOPHYSICS, 68:5 (2003), 1749–1755 | DOI
[16] Balandin M. Yu., Shurina E. P., Metody resheniya SLAU bolshoi razmernosti, NGTU, Novosibirsk, 2000
[17] Saad Y., Iterative methods for sparse linear systems, 2 ed., 2000
[18] Esterbyu O., Zlatev Z., Pryamye metody dlya razrezhennykh matrits, Mir, M., 1987 | MR
[19] University of Minnesota, Department of Computer Science and Engineering, Ofitsialnyi sait http://www-users.cs.umn.edu/~saad/software/SPARSKIT/
[20] BLAS, Ofitsialnyi sait biblioteki standartnykh funktsii lineinoi algebry http://www.netlib.org/blas/