Approximation of step functions in problems of mathematical modeling
Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 75-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

New methods of approximation of step functions with estimation of error of the approximation are suggested. The suggested methods do not have any disadvantages of traditional approximations of step functions by means of Furrier series and can be used in problems of mathematical modeling of wide range of processes and systems.
Keywords: step functions, mathematical modeling, approximation, estimation of error, examples of using.
Mots-clés : convergence
@article{MM_2011_23_3_a6,
     author = {S. V. Alyukov},
     title = {Approximation of step functions in problems of mathematical modeling},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_3_a6/}
}
TY  - JOUR
AU  - S. V. Alyukov
TI  - Approximation of step functions in problems of mathematical modeling
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 75
EP  - 88
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_3_a6/
LA  - ru
ID  - MM_2011_23_3_a6
ER  - 
%0 Journal Article
%A S. V. Alyukov
%T Approximation of step functions in problems of mathematical modeling
%J Matematičeskoe modelirovanie
%D 2011
%P 75-88
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_3_a6/
%G ru
%F MM_2011_23_3_a6
S. V. Alyukov. Approximation of step functions in problems of mathematical modeling. Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 75-88. http://geodesic.mathdoc.fr/item/MM_2011_23_3_a6/

[1] Nikitin A. V., Shishlakov V. F., Parametricheskii sintez nelineinykh sistem avtomaticheskogo upravleniya, SPbGUAP, SPb., 2003, 358 pp.

[2] Meltzer D., “On the expressibility of piecewise linear continuous functions as the difference of two piecewise linear convex functions”, Math. Program. Study, 29 (1986), 118–134 | MR

[3] Baskakov S. I., Radiotekhnicheskie tsepi i signaly, Uchebnik dlya VUZov, 3-e izd., dopoln. i pererab., Vysshaya shkola, M., 2000, 462 pp.

[4] Popov E. P., Teoriya nelineinykh sistem avtomaticheskogo regulirovaniya i upravleniya, Ucheb. posobie., 2-e izd., ster., Nauka, Gl. red. fiz.-mat. lit., M., 1988, 256 pp. | MR

[5] Helmberg G., “The Gibbs phenomenon for Fourier interpolation”, J. Approx. Theory, 78 (1994), 41–63 | DOI | MR | Zbl

[6] Zhuk V. V., Natanson G. I., Trigonometricheskie ryady Fure i elementy teorii approksimatsii, Izd-vo Leningr. un-ta, L., 1983, 188 pp. | MR | Zbl

[7] Gulia N. V., Klokov V. G., Yurkov S. A., Detali mashin, Izdatelskii tsentr “Akademiya”, M., 2004, 416 pp.

[8] Fadeyev V., Haber C., “Reconstruction of Recorded Sound from an Edison Cylinder using Three-Dimensional Non-Contact Optical Surface Metrology”, J. Audio Eng. Soc., 53:6, June (2005), 485–508

[9] Alyukov S. V., Dinamika inertsionnogo transformatora vraschayuschego momenta bez mekhanizmov svobodnogo khoda, avtoreferat dissertatsii $\dots$ kand. tekhn. nauk, VPI, Vladimir, 1983