About one new two-stages Rosenbrock scheme for differential-algebraic systems
Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 139-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations for coefficients of two-stages Rosenbrock scheme guarantying approximation with third order of accuracy for differential-algebraic system (index 1) are obtained in this paper. These coefficients are complex numbers. New 2-stages Rosenbrock scheme is constructed. It is L2-stable. This scheme has accuracy $O(\tau^3)$ for differential-algebraic systems and $O(\tau^4)$ for pure differential stiff systems. Convergence of this scheme is proved. This scheme was tested on several standard stiff tests and compared with previously know scheme of the same class.
Keywords: stiff-system, differential-algebraic systems, Rosenbrock schemes, schemes with complex parameters, A-stability, L-stability.
@article{MM_2011_23_3_a11,
     author = {A. B. Alshin and E. A. Alshina},
     title = {About one new two-stages {Rosenbrock} scheme for differential-algebraic systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {139--160},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_3_a11/}
}
TY  - JOUR
AU  - A. B. Alshin
AU  - E. A. Alshina
TI  - About one new two-stages Rosenbrock scheme for differential-algebraic systems
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 139
EP  - 160
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_3_a11/
LA  - ru
ID  - MM_2011_23_3_a11
ER  - 
%0 Journal Article
%A A. B. Alshin
%A E. A. Alshina
%T About one new two-stages Rosenbrock scheme for differential-algebraic systems
%J Matematičeskoe modelirovanie
%D 2011
%P 139-160
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_3_a11/
%G ru
%F MM_2011_23_3_a11
A. B. Alshin; E. A. Alshina. About one new two-stages Rosenbrock scheme for differential-algebraic systems. Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 139-160. http://geodesic.mathdoc.fr/item/MM_2011_23_3_a11/

[1] A. B. Alshin, E. A. Alshina, A. G. Limonov, “Dvukhstadiinye kompleksnye skhemy Rozenbroka dlya zhestkikh sistem”, ZhVMiMF, 49:2 (2009), 270–287 | MR | Zbl

[2] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685s pp.

[3] A. B. Alshin, E. A. Alshina, N. N. Kalitkin, A. B. Koryagina, “Chislennoe reshenie sverkhzhestkikh differentsialno-algebraicheskikh sistem”, DAN, 408:4 (2006), 460–464 | MR

[4] H. H. Rosenbrock, “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[5] D. S. Guzhev, N. N. Kalitkin, “Optimalnaya skhema dlya paketa ROS4”, Matematicheskoe modelirovanie, 6:11 (1994), 128–138 | MR | Zbl

[6] N. N. Kalitkin, S. L. Panchenko, “Optimalnye skhemy dlya zhestkikh neavtonomnykh sistem”, Matem. modelirovanie, 11:6 (1999), 52–81 | MR | Zbl

[7] P. D. Shirkov, “Optimalno zatukhayuschie skhemy s kompleksnymi koeffitsientami dlya zhestkikh sistem ODU”, Matematicheskoe modelirovanie, 4:8 (1992), 47–57 | MR | Zbl

[8] N. N. Kalitkin, “Chislennye metody resheniya zhestkikh sistem”, Matematicheskoe modelirovanie, 7:5 (1995), 8–11 | Zbl

[9] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniya na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.

[10] P. Rentrop, M. Roche, G. Steinebach, “The application of Rosenbrock–Wanner type methods with stepsize control in differential-algebraic equations”, Numer. Math., 55 (1989), 545–563 | DOI | MR | Zbl

[11] V. A. Ilin, E. G. Poznyak, Osnovy matematicheskogo analiza, Chast I, Fizmatlit, M., 2002