Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_3_a10, author = {A. M. Zubanov and N. I. Kokonkov and P. D. Shirkov}, title = {One-stage {Rosenbrock} method with complex coefficients and automatic time step evaluation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {127--138}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_3_a10/} }
TY - JOUR AU - A. M. Zubanov AU - N. I. Kokonkov AU - P. D. Shirkov TI - One-stage Rosenbrock method with complex coefficients and automatic time step evaluation JO - Matematičeskoe modelirovanie PY - 2011 SP - 127 EP - 138 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_3_a10/ LA - ru ID - MM_2011_23_3_a10 ER -
%0 Journal Article %A A. M. Zubanov %A N. I. Kokonkov %A P. D. Shirkov %T One-stage Rosenbrock method with complex coefficients and automatic time step evaluation %J Matematičeskoe modelirovanie %D 2011 %P 127-138 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2011_23_3_a10/ %G ru %F MM_2011_23_3_a10
A. M. Zubanov; N. I. Kokonkov; P. D. Shirkov. One-stage Rosenbrock method with complex coefficients and automatic time step evaluation. Matematičeskoe modelirovanie, Tome 23 (2011) no. 3, pp. 127-138. http://geodesic.mathdoc.fr/item/MM_2011_23_3_a10/
[1] Khairer E., Nërsett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR
[2] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[3] Rosenbrock H., “Some general implicit processes for numerical solution of differential equations”, Computer J., 5:4 (1963), 329–330 | DOI | MR | Zbl
[4] Kalitkin N. N., Kuzmina L. V., Integrirovanie zhestkikh sistem differentsialnykh uravnenii, Preprint No 80, IPM im. M. V. Keldysha AN SSSR, 1981
[5] Shirkov P. D., “Raznostnye skhemy dlya chislennogo integrirovaniya neavtonomnykh zhestkikh ODU”, Zh. vychisl. matem. i matem. fiz., 27:1 (1987), 131–135 | MR | Zbl
[6] Dnestrovskaya E. Yu., Kalitkin N. N., Ritus I. V., “Reshenie uravnenii v chastnykh proizvodnykh skhemami s kompleksnymi koeffitsientami”, Matem. modelirov., 3:9 (1991), 114–127 | MR | Zbl
[7] Guzhev D. S., Kalitkin N. N., “Uravnenie Byurgersa – test dlya chislennykh metodov”, Matem. modelirovanie, 7:10 (1995), 12–32 | MR | Zbl
[8] Anistratov D. Yu., Goldin V. Ya., “Reaktor na bystrykh neitronakh v samoreguliruemom neitronno-yadernom rezhime”, Matem. modelirovanie, 7:4 (1995), 99–127 | MR | Zbl
[9] Guzhev D. S., Zaifert P., Kalitkin N. N., Shirkov P. D., “Chislennye metody dlya zadach khimicheskoi kinetiki s diffuziei”, Matematich. modelirovanie, 4:1 (1992), 98–110
[10] Alexander R., “Diagonally implicit Runge–Kutta methods for stiff ODEs”, SIAM J. N. A., 14:6 (1977), 1006–1021 | DOI | MR | Zbl
[11] Kochetkov K. A., Shirkov P. D., “$L$-zatukhayuschie ROW-metody s tochnoi otsenkoi lokalnoi pogreshnosti”, Matematicheskoe modelirovanie, 13:8 (2001), 35–43 | Zbl
[12] Kochetkov K. A., Shirkov P. D., “$L$-zatukhayuschie ROW metody tretego poryadka tochnosti”, Zh. vych. matemat. i matem. fiz., 37:6 (1997), 699–710 | MR | Zbl
[13] Butcher J., The numerical analysis of ordinary differential equations, Runge–Kutta and general linear methods, John Wiley Sons Ltd., London, 1987 | MR | Zbl