Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_2_a5, author = {Yu. A. Bondarenko}, title = {Phase volume and canonicity preservation in finite-difference gas dynamic schemes constructed with the sequential variational method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {75--95}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_2_a5/} }
TY - JOUR AU - Yu. A. Bondarenko TI - Phase volume and canonicity preservation in finite-difference gas dynamic schemes constructed with the sequential variational method JO - Matematičeskoe modelirovanie PY - 2011 SP - 75 EP - 95 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_2_a5/ LA - ru ID - MM_2011_23_2_a5 ER -
%0 Journal Article %A Yu. A. Bondarenko %T Phase volume and canonicity preservation in finite-difference gas dynamic schemes constructed with the sequential variational method %J Matematičeskoe modelirovanie %D 2011 %P 75-95 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2011_23_2_a5/ %G ru %F MM_2011_23_2_a5
Yu. A. Bondarenko. Phase volume and canonicity preservation in finite-difference gas dynamic schemes constructed with the sequential variational method. Matematičeskoe modelirovanie, Tome 23 (2011) no. 2, pp. 75-95. http://geodesic.mathdoc.fr/item/MM_2011_23_2_a5/
[1] Goloviznin V. M., Samarskii A. A., Favorskii A. P., “Variatsionnyi podkhod k postroeniyu konechno-raznostnykh matematicheskikh modelei v gidrodinamike”, Doklady Akademii nauk SSSR, 235:6 (1977), 1285–1288 | MR | Zbl
[2] Korshiya T. K., Tishkin V. F., Samarskii A. A., Favorskii A. P., Shashkov M. Yu., Variatsionno-operatornye raznostnye skhemy dlya uravnenii matematicheskoi fiziki, izdatelstvo Tbilisskogo universiteta, Tbilisi, 1983, 144 pp. | MR | Zbl
[3] Berdichevskii V. L., Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983, 448 pp. | MR
[4] Bondarenko Yu. A., “Primenenie variatsionnykh printsipov mekhaniki dlya postroeniya diskretnykh po vremeni raznostnykh modelei gazodinamiki, 1. Opisanie metoda na prosteishikh primerakh”, Voprosy atomnoi nauki i tekhniki. Ser. Metodiki i programmy chislennogo resheniya zadach matematicheskoi fiziki, 1985, no. 2, 68–75
[5] Bondarenko Yu. A., “Primenenie variatsionnykh printsipov mekhaniki dlya postroeniya diskretnykh po vremeni raznostnykh modelei gazodinamiki, 5. Zakony sokhraneniya impulsa i momenta impulsa v raznostnykh skhemakh s golonomnymi svyazyami”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 1992, no. 1, 21–27 | MR
[6] Suris Yu. B., “O kanonichnosti otobrazhenii, porozhdaemykh metodami tipa Runge-Kutty pri integrirovanii sistem $\ddot x=-\partial U/\partial x$”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 29:2 (1989), 202–211 | MR | Zbl
[7] Suris Yu. B., “Gamiltonovy metody tipa Runge–Kutty i ikh variatsionnaya traktovka”, Matematicheskoe modelirovanie, 2:4 (1990), 78–87 | MR | Zbl
[8] Bondarenko Yu. A., “Skrytaya tochnost v variatsionnykh raznostnykh skhemakh povyshennogo poryadka approksimatsii dlya lineinykh uravnenii s peremennymi koeffitsientami”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 1994, no. 2, 39–44
[9] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 432 pp. | MR
[10] Shmuttser E., Osnovnye printsipy klassicheskoi mekhaniki i klassicheskoi teorii polya (kanonicheskii apparat), Merkurii-PRESS, M., 2000, 167 pp.
[11] Arnold V. I., Avets A., Ergodicheskie problemy klassicheskoi mekhaniki, Izhevskaya respublikanskaya tipografiya, Izhevsk, 1990, 284 pp.
[12] Favorskii A. P., “Variatsionno-diskretnye modeli uravnenii gidrodinamiki”, Differentsialnye uravneniya, 16:7 (1980), 1308–1321 | MR
[13] Volkova R. A., Ivanov A. A., Mikhailova N. V., Moiseenko L. V., Tishkin V. F., Favorskii A. P., Variatsionno-raznostnye skhemy dlya zadach trëkhmernoi gazovoi dinamiki v lagranzhevykh peremennykh, Preprint No 112, Institut prikladnoi matematiki Akademii nauk SSSR, M., 1982
[14] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A., Tishkin V. F., Favorskii A. P., Raznostnye skhemy na neregulyarnykh setkakh, Izdatelstvo ZAO “Kriterii”, Minsk, 1996, 276 pp.
[15] Bazarov I. P., Termodinamika, Vysshaya shkola, M., 1991, 376 pp.
[16] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988, 552 pp. | MR | Zbl
[17] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl