Phase volume and canonicity preservation in finite-difference gas dynamic schemes constructed with the sequential variational method
Matematičeskoe modelirovanie, Tome 23 (2011) no. 2, pp. 75-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proves that the phase volume and canonicity (Hamiltonicity) are preserved in the finite-difference schemes of Lagrangiam gas dynamics constructed using the sequential variational method with Hamilton–Ostrogradskii principle of least action, which is discrete in time and space. It has been proved that in implicit finite-difference schemes with permanent “weight” $\theta=1/2$ (in the equations for coordinates and velocity) the phase volume and canonicity are not preserved for an arbitrary varying time step independently of the way of selecting “hidden” generalized coordinates and “hidden” generalized momenta (such difference schemes cannot be constructed using the sequential variational method).
Keywords: Lagrangian gas dynamics, principle of least action, variational difference schemes, “cross”-type difference schemes, implicit difference schemes, schemes with “weights”, variable time step, canonicity, “hidden” variables.
Mots-clés : phase volume
@article{MM_2011_23_2_a5,
     author = {Yu. A. Bondarenko},
     title = {Phase volume and canonicity preservation in finite-difference gas dynamic schemes constructed with the sequential variational method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--95},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_2_a5/}
}
TY  - JOUR
AU  - Yu. A. Bondarenko
TI  - Phase volume and canonicity preservation in finite-difference gas dynamic schemes constructed with the sequential variational method
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 75
EP  - 95
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_2_a5/
LA  - ru
ID  - MM_2011_23_2_a5
ER  - 
%0 Journal Article
%A Yu. A. Bondarenko
%T Phase volume and canonicity preservation in finite-difference gas dynamic schemes constructed with the sequential variational method
%J Matematičeskoe modelirovanie
%D 2011
%P 75-95
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_2_a5/
%G ru
%F MM_2011_23_2_a5
Yu. A. Bondarenko. Phase volume and canonicity preservation in finite-difference gas dynamic schemes constructed with the sequential variational method. Matematičeskoe modelirovanie, Tome 23 (2011) no. 2, pp. 75-95. http://geodesic.mathdoc.fr/item/MM_2011_23_2_a5/

[1] Goloviznin V. M., Samarskii A. A., Favorskii A. P., “Variatsionnyi podkhod k postroeniyu konechno-raznostnykh matematicheskikh modelei v gidrodinamike”, Doklady Akademii nauk SSSR, 235:6 (1977), 1285–1288 | MR | Zbl

[2] Korshiya T. K., Tishkin V. F., Samarskii A. A., Favorskii A. P., Shashkov M. Yu., Variatsionno-operatornye raznostnye skhemy dlya uravnenii matematicheskoi fiziki, izdatelstvo Tbilisskogo universiteta, Tbilisi, 1983, 144 pp. | MR | Zbl

[3] Berdichevskii V. L., Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983, 448 pp. | MR

[4] Bondarenko Yu. A., “Primenenie variatsionnykh printsipov mekhaniki dlya postroeniya diskretnykh po vremeni raznostnykh modelei gazodinamiki, 1. Opisanie metoda na prosteishikh primerakh”, Voprosy atomnoi nauki i tekhniki. Ser. Metodiki i programmy chislennogo resheniya zadach matematicheskoi fiziki, 1985, no. 2, 68–75

[5] Bondarenko Yu. A., “Primenenie variatsionnykh printsipov mekhaniki dlya postroeniya diskretnykh po vremeni raznostnykh modelei gazodinamiki, 5. Zakony sokhraneniya impulsa i momenta impulsa v raznostnykh skhemakh s golonomnymi svyazyami”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 1992, no. 1, 21–27 | MR

[6] Suris Yu. B., “O kanonichnosti otobrazhenii, porozhdaemykh metodami tipa Runge-Kutty pri integrirovanii sistem $\ddot x=-\partial U/\partial x$”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 29:2 (1989), 202–211 | MR | Zbl

[7] Suris Yu. B., “Gamiltonovy metody tipa Runge–Kutty i ikh variatsionnaya traktovka”, Matematicheskoe modelirovanie, 2:4 (1990), 78–87 | MR | Zbl

[8] Bondarenko Yu. A., “Skrytaya tochnost v variatsionnykh raznostnykh skhemakh povyshennogo poryadka approksimatsii dlya lineinykh uravnenii s peremennymi koeffitsientami”, Voprosy atomnoi nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 1994, no. 2, 39–44

[9] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 432 pp. | MR

[10] Shmuttser E., Osnovnye printsipy klassicheskoi mekhaniki i klassicheskoi teorii polya (kanonicheskii apparat), Merkurii-PRESS, M., 2000, 167 pp.

[11] Arnold V. I., Avets A., Ergodicheskie problemy klassicheskoi mekhaniki, Izhevskaya respublikanskaya tipografiya, Izhevsk, 1990, 284 pp.

[12] Favorskii A. P., “Variatsionno-diskretnye modeli uravnenii gidrodinamiki”, Differentsialnye uravneniya, 16:7 (1980), 1308–1321 | MR

[13] Volkova R. A., Ivanov A. A., Mikhailova N. V., Moiseenko L. V., Tishkin V. F., Favorskii A. P., Variatsionno-raznostnye skhemy dlya zadach trëkhmernoi gazovoi dinamiki v lagranzhevykh peremennykh, Preprint No 112, Institut prikladnoi matematiki Akademii nauk SSSR, M., 1982

[14] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A., Tishkin V. F., Favorskii A. P., Raznostnye skhemy na neregulyarnykh setkakh, Izdatelstvo ZAO “Kriterii”, Minsk, 1996, 276 pp.

[15] Bazarov I. P., Termodinamika, Vysshaya shkola, M., 1991, 376 pp.

[16] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988, 552 pp. | MR | Zbl

[17] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl