Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_2_a4, author = {B. N. Azarenok}, title = {Construction of grid ortogonal near boundary of two-dimensional domain with prescribed nodal clustering}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {62--74}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_2_a4/} }
TY - JOUR AU - B. N. Azarenok TI - Construction of grid ortogonal near boundary of two-dimensional domain with prescribed nodal clustering JO - Matematičeskoe modelirovanie PY - 2011 SP - 62 EP - 74 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_2_a4/ LA - ru ID - MM_2011_23_2_a4 ER -
B. N. Azarenok. Construction of grid ortogonal near boundary of two-dimensional domain with prescribed nodal clustering. Matematičeskoe modelirovanie, Tome 23 (2011) no. 2, pp. 62-74. http://geodesic.mathdoc.fr/item/MM_2011_23_2_a4/
[1] Steger J. L., Chausse D. S., “Generation of body-fitted coordinates using hyperbolic partial differential equations”, SIAM J. Sci. Comput., 1:4 (1980), 431–437 | DOI | MR | Zbl
[2] Prokopov G. P., “Nekotorye obschie voprosy konstruirovaniya algoritmov postroeniya raznostnykh setok”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelir. fiz. protsessov, 1998, no. 1, 3–13 | MR
[3] Winslow A. M., “Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh”, J. Comput. Phys., 1 (1966), 149–172 | DOI | MR | Zbl
[4] Godunov S. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 429–440 | MR | Zbl
[5] Thompson J. F., Mastin C. W., Thames F., “Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies”, J. Comp. Phys., 15 (1974), 299–319 | DOI | Zbl
[6] Thompson J. F., Thames F. C., Mastin C. W., “TOMCAT – a code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies”, J. Comp. Phys., 24 (1977), 274–320 | DOI
[7] Spekreijse S. P., “Elliptic grid generation based on Laplace equations and algebraic transformations”, J. Comput. Phys., 118 (1995), 38–61 | DOI | Zbl
[8] Ivanenko S. A., “Upravlenie formoi yacheek v protsesse postroeniya setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1662–1684 | MR | Zbl
[9] Azarenok B. N., “O postroenii strukturirovannykh setok v dvumernykh nevypuklykh oblastyakh s pomoschyu otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 49:5 (2009), 826–839 | MR | Zbl
[10] Sidorov A. F., Shabashova T. I., “Ob odnom metode rascheta optimalnykh raznostnykh setok dlya mnogomernykh oblastei”, Chisl. metody mekh. spl. sredy, 12:5 (1981), 106–124
[11] Steger J. L., Sorenson R. L., “Automatic mesh-point clustering near a boundary in grid generation with elliptic partial differential equations”, J. Comp. Physics, 33 (1979), 405–410 | DOI | MR
[12] Visbal M., Knight D., “Generation of orthogonal and nearly orthogonal coordinates with grid control near boundaries”, AIAA J., 20:3 (1982), 305–306 | DOI | Zbl
[13] Kaul U. K., “New boundary constraints for elliptic systems used in grid generation problems”, J. Comput. Phys., 189 (2003), 476–492 | DOI | MR | Zbl
[14] Knupp P., Luczak R., “Truncation error in grid generation: a case study”, Numer. Meth. Part. Dif. Eq., 11 (1995), 561–571 | DOI | MR | Zbl
[15] Rado T., “Aufgabe 41”, Jahresber Deutsche Math. Verein., 35 (1926), 49
[16] Boehm W., “Bezier presentation of airfoils”, Computer Aided Geometric Design, 4 (1987), 17–22 | DOI | MR | Zbl