Construction of grid ortogonal near boundary of two-dimensional domain with prescribed nodal clustering
Matematičeskoe modelirovanie, Tome 23 (2011) no. 2, pp. 62-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is considered a method of generating a structured mesh on a two-dimensional domain by using a mapping of the parametric domain with the square mesh onto the underlying domain. Functions, implementing the mapping, are sought by solving the Dirichlet problem for the system of quasi-linear elliptic partial differential equations of the second order. With aim of controlling grid line location, it is implemented an additional local mapping which induces a control metric. The additional mapping allows obtaining mesh with lines orthogonal to the domain boundary and with prescribed mesh point clustering near the domain boundary. An example of mesh generation around an airfoil is presented.
Keywords: structured mesh, elliptic grid generation, control metric.
@article{MM_2011_23_2_a4,
     author = {B. N. Azarenok},
     title = {Construction of grid ortogonal near boundary of two-dimensional domain with prescribed nodal clustering},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {62--74},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_2_a4/}
}
TY  - JOUR
AU  - B. N. Azarenok
TI  - Construction of grid ortogonal near boundary of two-dimensional domain with prescribed nodal clustering
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 62
EP  - 74
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_2_a4/
LA  - ru
ID  - MM_2011_23_2_a4
ER  - 
%0 Journal Article
%A B. N. Azarenok
%T Construction of grid ortogonal near boundary of two-dimensional domain with prescribed nodal clustering
%J Matematičeskoe modelirovanie
%D 2011
%P 62-74
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_2_a4/
%G ru
%F MM_2011_23_2_a4
B. N. Azarenok. Construction of grid ortogonal near boundary of two-dimensional domain with prescribed nodal clustering. Matematičeskoe modelirovanie, Tome 23 (2011) no. 2, pp. 62-74. http://geodesic.mathdoc.fr/item/MM_2011_23_2_a4/

[1] Steger J. L., Chausse D. S., “Generation of body-fitted coordinates using hyperbolic partial differential equations”, SIAM J. Sci. Comput., 1:4 (1980), 431–437 | DOI | MR | Zbl

[2] Prokopov G. P., “Nekotorye obschie voprosy konstruirovaniya algoritmov postroeniya raznostnykh setok”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelir. fiz. protsessov, 1998, no. 1, 3–13 | MR

[3] Winslow A. M., “Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh”, J. Comput. Phys., 1 (1966), 149–172 | DOI | MR | Zbl

[4] Godunov S. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 429–440 | MR | Zbl

[5] Thompson J. F., Mastin C. W., Thames F., “Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies”, J. Comp. Phys., 15 (1974), 299–319 | DOI | Zbl

[6] Thompson J. F., Thames F. C., Mastin C. W., “TOMCAT – a code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies”, J. Comp. Phys., 24 (1977), 274–320 | DOI

[7] Spekreijse S. P., “Elliptic grid generation based on Laplace equations and algebraic transformations”, J. Comput. Phys., 118 (1995), 38–61 | DOI | Zbl

[8] Ivanenko S. A., “Upravlenie formoi yacheek v protsesse postroeniya setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1662–1684 | MR | Zbl

[9] Azarenok B. N., “O postroenii strukturirovannykh setok v dvumernykh nevypuklykh oblastyakh s pomoschyu otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 49:5 (2009), 826–839 | MR | Zbl

[10] Sidorov A. F., Shabashova T. I., “Ob odnom metode rascheta optimalnykh raznostnykh setok dlya mnogomernykh oblastei”, Chisl. metody mekh. spl. sredy, 12:5 (1981), 106–124

[11] Steger J. L., Sorenson R. L., “Automatic mesh-point clustering near a boundary in grid generation with elliptic partial differential equations”, J. Comp. Physics, 33 (1979), 405–410 | DOI | MR

[12] Visbal M., Knight D., “Generation of orthogonal and nearly orthogonal coordinates with grid control near boundaries”, AIAA J., 20:3 (1982), 305–306 | DOI | Zbl

[13] Kaul U. K., “New boundary constraints for elliptic systems used in grid generation problems”, J. Comput. Phys., 189 (2003), 476–492 | DOI | MR | Zbl

[14] Knupp P., Luczak R., “Truncation error in grid generation: a case study”, Numer. Meth. Part. Dif. Eq., 11 (1995), 561–571 | DOI | MR | Zbl

[15] Rado T., “Aufgabe 41”, Jahresber Deutsche Math. Verein., 35 (1926), 49

[16] Boehm W., “Bezier presentation of airfoils”, Computer Aided Geometric Design, 4 (1987), 17–22 | DOI | MR | Zbl