The quantitative conditionality criterium for the systems of linear algebraic equations
Matematičeskoe modelirovanie, Tome 23 (2011) no. 2, pp. 3-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well known conditionality criteria for systems of linear algebraic equation are shown to be unadecvate. The new criterium is propoused it is a quantitative, wich describes a loss of decimal digitals in computations. The adecvasy of this criterium is illustrated by numerical examples. The conditionality criteria are calculated for some important types of linear systems, arizing from difference schemes for differential or integral equations.
Keywords: systems of linear algebraic equations, conditionality criterium.
@article{MM_2011_23_2_a0,
     author = {N. N. Kalitkin and L. F. Yukhno and L. V. Kuzmina},
     title = {The quantitative conditionality criterium for the systems of linear algebraic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--26},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_2_a0/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - L. F. Yukhno
AU  - L. V. Kuzmina
TI  - The quantitative conditionality criterium for the systems of linear algebraic equations
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 3
EP  - 26
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_2_a0/
LA  - ru
ID  - MM_2011_23_2_a0
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A L. F. Yukhno
%A L. V. Kuzmina
%T The quantitative conditionality criterium for the systems of linear algebraic equations
%J Matematičeskoe modelirovanie
%D 2011
%P 3-26
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_2_a0/
%G ru
%F MM_2011_23_2_a0
N. N. Kalitkin; L. F. Yukhno; L. V. Kuzmina. The quantitative conditionality criterium for the systems of linear algebraic equations. Matematičeskoe modelirovanie, Tome 23 (2011) no. 2, pp. 3-26. http://geodesic.mathdoc.fr/item/MM_2011_23_2_a0/

[1] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Lan, SPb., 2002

[2] Ortega Dzh., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR

[3] Kalitkin N. N., Yukhno L. F., Kuzmina L. V., “Kriterii obuslovlennosti sistem algebraicheskikh uravnenii”, DAN, 434:4 (2010), 464–467 | MR

[4] Boltnev A. A., Kalitkin N. N., Kacher O. A., “Logarifmicheski skhodyaschiisya schet na ustanovlenie”, DAN, 404:2 (2005), 177–180 | MR | Zbl

[5] Yukhno L. F., “Modifikatsiya nekotorykh metodov tipa sopryazhennykh napravlenii dlya resheniya sistem lineinykh algebraicheskikh uravnenii”, ZhVMiMF, 47:11 (2007), 1811–1818 | MR

[6] Alshina E. A., Boltnev A. A., Kacher O. A., “Empiricheskoe uluchshenie prosteishikh gradientnykh metodov”, Matematicheskoe modelirovanie, 17:6 (2005), 43–57 | MR | Zbl

[7] Alshina E. A., Boltnev A. A., Kacher O. A., “Gradientnye metody s uskorennoi skhodimostyu”, ZhVMiMF, 45:3 (2005), 374–382 | MR | Zbl

[8] Kalitkin N. N., Shlyakhov N. M., “Simmetrizatsiya globalnykh splainov”, Matematicheskoe modelirovanie, 11:8 (1999), 116–126 | MR | Zbl

[9] Kalitkin N. N., Kuzmina L. V., “Ob approksimatsii neortogonalnymi sistemami”, Matematicheskoe modelirovanie, 16:3 (2004), 95–108 | MR | Zbl

[10] Burmin V. Yu., “Zadacha planirovaniya eksperimenta i obuslovlennost sistem lineinykh algebraicheskikh uravnenii”, Izvestiya akademii nauk SSSR. Tekhnicheskaya kibernetika, 1976, no. 2, 195–200 | Zbl