Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_1_a8, author = {A. M. Meirmanov}, title = {The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. {Part~I:} {The} microscopic description}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {100--114}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_1_a8/} }
TY - JOUR AU - A. M. Meirmanov TI - The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. Part~I: The microscopic description JO - Matematičeskoe modelirovanie PY - 2011 SP - 100 EP - 114 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_1_a8/ LA - ru ID - MM_2011_23_1_a8 ER -
%0 Journal Article %A A. M. Meirmanov %T The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. Part~I: The microscopic description %J Matematičeskoe modelirovanie %D 2011 %P 100-114 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2011_23_1_a8/ %G ru %F MM_2011_23_1_a8
A. M. Meirmanov. The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. Part~I: The microscopic description. Matematičeskoe modelirovanie, Tome 23 (2011) no. 1, pp. 100-114. http://geodesic.mathdoc.fr/item/MM_2011_23_1_a8/
[1] Meirmanov A., “Double porosity models for absolutely rigid body via reiterated homogenization”, Euro J. of Appl. Math., 2009, Submitted
[2] Meirmanov A., “Double porosity models in incompressible poroelastic media”, Mathematical Models and Methods in Applied Sciences, 20:4 (2010), 1–24 | DOI | MR
[3] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, PMM, 24:5 (1960), 852–864 | MR | Zbl
[4] Barenblatt G. I., Entov V. M., Ryzhik V. M., Teoriya nestatsionarnoi filtratsii zhidkosti i gaza, Nedra, M., 1972, 290 pp.
[5] Warren J. E., Root P. J., “The behaviour of naturally fractured reservoirs”, Soc. Petroleum Engrs. J., 3 (1963), 235–255
[6] Kazemi H., “Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution”, Soc. Petroleum Engrs. J., 9 (1969), 451–462
[7] A. de Swaan, “Analytic solutions for determining naturally fractured reservoir properties by well testing”, Soc. Petroleum Engrs. J., 16 (1976), 117–122
[8] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | DOI | Zbl
[9] Biot M. A., “Generalized theory of acoustic propagation in porous dissipative media”, Journal of Acoustic Society of America, 34 (1962), 1256–1264 | DOI | MR
[10] Sanches-Palensiya E., Neodnorodnye sredy i teoriya vibratsii, Mir, M., 1984, 472 pp. | MR
[11] Nguetseng G., “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl
[12] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. Mat. Zhurnal, 48:3 (2007), 645–667 | MR | Zbl
[13] Meirmanov A. M., “Opredelenie akusticheskikh i filtratsionnykh kharakteristik termouprugikh poristykh sred: uravneniya termo-porouprugosti Bio”, Matematicheskii sbornik, 199:3 (2008), 45–68 | MR | Zbl
[14] Meirmanov A., “Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media”, Euro. Jnl. Of Applied Mathematics, 2008, no. 19, 259–284 | MR | Zbl
[15] Meirmanov A., “A description of seismic acoustic wave propagation in porous media via homogeni-zation”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl
[16] Arbogast T., Douglas J. Jn., Hornung U., “Derivation of the double-porosity model of single phase flow via homogenization theory”, SIAM J. Math. Anal., 21 (1990), 823–836 | DOI | MR | Zbl
[17] Bourgeat A., Pankratov L., Panfilov M., “Study of the double porosity model versus the fissures thikness”, Asymptotic Analysis, 38 (2004), 129–141 | MR | Zbl
[18] Chen Z., “Homogenization and simulation for compositional flow in naturally fractured reservoirs”, J. Math. Anal. App., 326 (2007), 31–75 | DOI | MR
[19] Allaire G., Briane M., “Multiscale convergence and reiterated homogenization”, Proceed. of Royal Soc. Edinburgh Sect. A, 126 (1996), 297–342 | MR | Zbl
[20] Biot M. A., “General theory of three-dimensional consolidation”, J. Appl. Phys., 12 (1941), 155–164 | DOI | Zbl
[21] Terzaghi K., Braselton R., Mesri G., Soil Mechanics in Engineering Practice, IEEE, Wiley, 1996, 543 pp.
[22] Acerbi E., Chiado Piat V., Dal Maso G., Percivale D., “An extension theorem from connect ed sets and homogenization in general periodic domains”, Nonlinear Anal., 18 (1992), 481–496 | DOI | MR | Zbl
[23] Conca C., “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, J. Math. Pures et Appl., 64 (1985), 12–32 | MR