The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. Part~I: The microscopic description
Matematičeskoe modelirovanie, Tome 23 (2011) no. 1, pp. 100-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Double porosity models for the liquid filtration in a naturally fructured reservoir are derived from homogenization theory. The basic mathematical model on the microscopic level consists of the stationary Stokes equations for a compressible viscous fluid, occupyinga crack-pore space (liquid domain), and stationary Lame equations for the elastic solid skeleton, coupled with corresponding boundary conditions on the common boundary “solid skeleton–liquid domain”. We suppose, that the liquid domain is a union of two independent systems of crack and pores and that the dimensionless size of pores $\delta$ depends on the dimensionless size $\varepsilon$ of cracks: $\delta=\varepsilon^r$ with $r>1$. Under supposition that the solid skeleton has a periodic structure we suggest the regorous derivation of homogenized equations, based on the G. Allaire and M. Briane method of multiscale convergence as the small parameter tends to zero. For the different combinations of incoming parameters we derive the well-known Biot–Terzaghi system or the anisotropic Lame equations for the mixture of the solid skeleton and liquin in cracks and pores. As a consequence of these results we derive the equations of a filtration the compressible liquid in absolutely rigid crack-pore media, which is the usual Darcy system of filtration. The present publication is the first part of above mentioned investigation, where we consider the microscopic model and derive all nessesary a'priori estimates.
Keywords: Stokes and Lame's equations, reiterated homogenization, poroelastic media.
@article{MM_2011_23_1_a8,
     author = {A. M. Meirmanov},
     title = {The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. {Part~I:} {The} microscopic description},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {100--114},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_1_a8/}
}
TY  - JOUR
AU  - A. M. Meirmanov
TI  - The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. Part~I: The microscopic description
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 100
EP  - 114
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_1_a8/
LA  - ru
ID  - MM_2011_23_1_a8
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%T The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. Part~I: The microscopic description
%J Matematičeskoe modelirovanie
%D 2011
%P 100-114
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_1_a8/
%G ru
%F MM_2011_23_1_a8
A. M. Meirmanov. The application of the reiterated homogenization method of differential equations to the theory of filtration of compressible liquids in compressible crack-pore media. Part~I: The microscopic description. Matematičeskoe modelirovanie, Tome 23 (2011) no. 1, pp. 100-114. http://geodesic.mathdoc.fr/item/MM_2011_23_1_a8/

[1] Meirmanov A., “Double porosity models for absolutely rigid body via reiterated homogenization”, Euro J. of Appl. Math., 2009, Submitted

[2] Meirmanov A., “Double porosity models in incompressible poroelastic media”, Mathematical Models and Methods in Applied Sciences, 20:4 (2010), 1–24 | DOI | MR

[3] Barenblatt G. I., Zheltov Yu. P., Kochina I. N., “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, PMM, 24:5 (1960), 852–864 | MR | Zbl

[4] Barenblatt G. I., Entov V. M., Ryzhik V. M., Teoriya nestatsionarnoi filtratsii zhidkosti i gaza, Nedra, M., 1972, 290 pp.

[5] Warren J. E., Root P. J., “The behaviour of naturally fractured reservoirs”, Soc. Petroleum Engrs. J., 3 (1963), 235–255

[6] Kazemi H., “Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution”, Soc. Petroleum Engrs. J., 9 (1969), 451–462

[7] A. de Swaan, “Analytic solutions for determining naturally fractured reservoir properties by well testing”, Soc. Petroleum Engrs. J., 16 (1976), 117–122

[8] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | DOI | Zbl

[9] Biot M. A., “Generalized theory of acoustic propagation in porous dissipative media”, Journal of Acoustic Society of America, 34 (1962), 1256–1264 | DOI | MR

[10] Sanches-Palensiya E., Neodnorodnye sredy i teoriya vibratsii, Mir, M., 1984, 472 pp. | MR

[11] Nguetseng G., “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl

[12] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. Mat. Zhurnal, 48:3 (2007), 645–667 | MR | Zbl

[13] Meirmanov A. M., “Opredelenie akusticheskikh i filtratsionnykh kharakteristik termouprugikh poristykh sred: uravneniya termo-porouprugosti Bio”, Matematicheskii sbornik, 199:3 (2008), 45–68 | MR | Zbl

[14] Meirmanov A., “Homogenized models for filtration and for acoustic wave propagation in thermo-elastic porous media”, Euro. Jnl. Of Applied Mathematics, 2008, no. 19, 259–284 | MR | Zbl

[15] Meirmanov A., “A description of seismic acoustic wave propagation in porous media via homogeni-zation”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[16] Arbogast T., Douglas J. Jn., Hornung U., “Derivation of the double-porosity model of single phase flow via homogenization theory”, SIAM J. Math. Anal., 21 (1990), 823–836 | DOI | MR | Zbl

[17] Bourgeat A., Pankratov L., Panfilov M., “Study of the double porosity model versus the fissures thikness”, Asymptotic Analysis, 38 (2004), 129–141 | MR | Zbl

[18] Chen Z., “Homogenization and simulation for compositional flow in naturally fractured reservoirs”, J. Math. Anal. App., 326 (2007), 31–75 | DOI | MR

[19] Allaire G., Briane M., “Multiscale convergence and reiterated homogenization”, Proceed. of Royal Soc. Edinburgh Sect. A, 126 (1996), 297–342 | MR | Zbl

[20] Biot M. A., “General theory of three-dimensional consolidation”, J. Appl. Phys., 12 (1941), 155–164 | DOI | Zbl

[21] Terzaghi K., Braselton R., Mesri G., Soil Mechanics in Engineering Practice, IEEE, Wiley, 1996, 543 pp.

[22] Acerbi E., Chiado Piat V., Dal Maso G., Percivale D., “An extension theorem from connect ed sets and homogenization in general periodic domains”, Nonlinear Anal., 18 (1992), 481–496 | DOI | MR | Zbl

[23] Conca C., “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, J. Math. Pures et Appl., 64 (1985), 12–32 | MR