Simple technique for constructing stability polynomials for explicit stabilized Runge--Kutta methods
Matematičeskoe modelirovanie, Tome 23 (2011) no. 1, pp. 81-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of constructing stability polynomial of the given degree is considered. This polynomial provides the given order of exponential approximation and the maximum length of stability domain along the real axis. The technique for the approximate solving this problem, which demands of tuning only two parameters, is proposed.
Keywords: explicit Runge–Kutta methods, stiff problems, stability polynomials.
@article{MM_2011_23_1_a6,
     author = {L. M. Skvortsov},
     title = {Simple technique for constructing stability polynomials for explicit stabilized {Runge--Kutta} methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--86},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_1_a6/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - Simple technique for constructing stability polynomials for explicit stabilized Runge--Kutta methods
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 81
EP  - 86
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_1_a6/
LA  - ru
ID  - MM_2011_23_1_a6
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T Simple technique for constructing stability polynomials for explicit stabilized Runge--Kutta methods
%J Matematičeskoe modelirovanie
%D 2011
%P 81-86
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_1_a6/
%G ru
%F MM_2011_23_1_a6
L. M. Skvortsov. Simple technique for constructing stability polynomials for explicit stabilized Runge--Kutta methods. Matematičeskoe modelirovanie, Tome 23 (2011) no. 1, pp. 81-86. http://geodesic.mathdoc.fr/item/MM_2011_23_1_a6/

[1] Lebedev V. I., “Kak reshat yavnymi metodami zhestkie sistemy differentsialnykh uravnenii”, Vychislitelnye protsessy i sistemy, 8, Nauka, M., 1991, 237–291 | MR

[2] Lebedev V. I., Medovikov A. A., “Yavnyi metod vtorogo poryadka tochnosti dlya resheniya zhestkikh sistem obyknovennykh differentsialnykh uravnenii”, Izv. vuzov. Matematika, 1998, no. 9, 55–63 | MR | Zbl

[3] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[4] Verwer J. G., “Explicit Runge-Kutta methods for parabolic partial differential equations”, Appl. Numer. Math., 22:1–3 (1996), 359–379 | DOI | MR | Zbl

[5] Medovikov A. A., “High order explicit methods for parabolic equations”, BIT, 38:2 (1998), 372–390 | DOI | MR | Zbl

[6] Abdulle A., “Fourth order Chebyshev methods with recurrence relation”, SIAM J. Sci. Comput., 23:6 (2002), 2041–2054 | DOI | MR | Zbl

[7] Skvortsov L. M., “Yavnye metody Runge-Kutty dlya umerenno zhestkikh zadach”, Zh. vychisl. ma-tem. i matem. fiz., 45:11 (2005), 2017–2030 | MR | Zbl

[8] Novikov E. A., “Konstruirovanie oblastei ustoichivosti yavnykh metodov tipa Runge-Kutta”, Vychislitelnye metody i programmirovanie, 10 (2009), 248–257 http://num-meth.srcc.msu.ru

[9] Martin-Vaquero J., Janssen B., “Second-order stabilized explicit Runge-Kutta methods for stiff problems”, Computer Physics Communications, 180:10 (2009), 1802–1810 | DOI | MR | Zbl

[10] Bogatyrev A. B., “Effektivnoe reshenie zadachi o nailuchshem mnogochlene ustoichivosti”, Matematicheskii sbornik, 196:7 (2005), 27–50 | MR | Zbl

[11] Abdulle A., “On roots and error constants of optimal stability polynomials”, BIT, 40:1 (2000), 177–182 | DOI | MR | Zbl

[12] Kozlov O. S., Kondakov D. E., Skvortsov L. M. i dr., Programmnyi kompleks “Modelirovanie v tekhnicheskikh ustroistvakh” http://model.exponenta.ru/mvtu/20050615.html