Particle method for mathematical models with allocated ionization front
Matematičeskoe modelirovanie, Tome 23 (2011) no. 12, pp. 132-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The kinetic equation for recoil electrons, which appears in the gas behind the photons’ front as a result of Compton scattering and photoabsorption, is considered. The electrons interaction with self-consistent electromagnetic field and ionizing scattering in the approximation of small energy transfer in collisions are taken into account. The self-consistent electromagnetic field is described by Maxwell equations. The conversion to ionization front proper time from laboratory time is done. The problem with initial conditions on the ionization front is considered. The process of the conduction current is considered. The delta-substitution, which reduces equation into identity, is constructed. So, the applicability of particle method for numerical simulation of ionized medium in ionization front proper time is justified.
Keywords: electromagnetic field, ionized medium, recoil electrons, distribution function, kinetic equation, particle method, generalized function.
Mots-clés : x-radiation
@article{MM_2011_23_12_a8,
     author = {A. V. Berezin and A. S. Vorontsov and M. B. Markov},
     title = {Particle method for mathematical models with allocated ionization front},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {132--142},
     publisher = {mathdoc},
     volume = {23},
     number = {12},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_12_a8/}
}
TY  - JOUR
AU  - A. V. Berezin
AU  - A. S. Vorontsov
AU  - M. B. Markov
TI  - Particle method for mathematical models with allocated ionization front
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 132
EP  - 142
VL  - 23
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_12_a8/
LA  - ru
ID  - MM_2011_23_12_a8
ER  - 
%0 Journal Article
%A A. V. Berezin
%A A. S. Vorontsov
%A M. B. Markov
%T Particle method for mathematical models with allocated ionization front
%J Matematičeskoe modelirovanie
%D 2011
%P 132-142
%V 23
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_12_a8/
%G ru
%F MM_2011_23_12_a8
A. V. Berezin; A. S. Vorontsov; M. B. Markov. Particle method for mathematical models with allocated ionization front. Matematičeskoe modelirovanie, Tome 23 (2011) no. 12, pp. 132-142. http://geodesic.mathdoc.fr/item/MM_2011_23_12_a8/

[1] Gaitler L., Kvantovaya teoriya izlucheniya, Inostrannaya literatura, M., 1956

[2] Mott N., Messi G., Teoriya atomnykh stolknovenii, Mir, M., 1969

[3] Hockney R. W., Eastwood J. W., Computer Simulation Using Particles, McGraw-Hill, New York, 1981

[4] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl

[5] Tormoznaya sposobnost elektronov i pozitronov, Doklad 37MKRE, Energoatomizdat, M., 1987

[6] Zhukovskii M. E., Markov M. B., “Matematicheskoe modelirovanie elektromagnitnykh polei radiatsionnogo proiskhozhdeniya”, Entsiklopediya nizkotemperaturnoi plazmy. Seriya B, ch. 2, v. VII-1, 628–652

[7] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[8] Karzas W. J., Latter R., “Detection of the Electromagnetic Radiation from Nuclear Explosions in Space”, Physical Review, 137:5B (1965), B1369–B1378 | DOI | MR

[9] Berezin A. V., Vorontsov A. S., Markov M. B., Plyuschenkov B. D., “O vyvode i reshenii uravnenii Maksvella v zadachakh s zadannym volnovym frontom polei”, Matematicheskoe modelirovanie, 18:4 (2006), 43–60 | MR

[10] Vlasov A. A., Statisticheskie funktsii raspredeleniya, GITTL, M., 1952

[11] Vedenyapin V. V., Kineticheskie uravneniya Boltsmana i Vlasova, FIZMATLIT, M., 2001

[12] Braun W., Hepp K., “The Vlasov Dynamics and Its Fluctuations in the 1/N Limit of Interacting Classical Particles”, Commun. Math. Phys., 56 (1977) | DOI | MR | Zbl

[13] Markov M. B., Parotkin S. V., Sysenko A. V., “Metod chastits dlya modeli elektromagnitnogo polya potoka elektronov v gaze”, Matematicheskoe modelirovanie, 20:5 (2008), 35–54 | MR | Zbl

[14] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Dobrosvet, M., 2000

[15] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Izd-vo MGU, M., 1984 | MR | Zbl

[16] Markov M. B., “Priblizhenie odnorodnogo rasseyaniya elektronov na traektoriyakh”, Matematicheskoe modelirovanie, 21:10 (2009), 85–93 | MR | Zbl