Monotone high-precision compact scheme for quasilinear hyperbolic equations
Matematičeskoe modelirovanie, Tome 23 (2011) no. 12, pp. 65-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Monotone homogeneous compact difference scheme, previously proposed by the authors for the linear transport equation, generalized to the case of quasilinear equations of hyperbolic type. The generalized scheme is fourth order approximation in spatial coordinates on a compact stencil and a first order approximation in time. The scheme is conservative, absolutely stable, monotonic over a wide range of local Courant number and can be solved by explicit formulas of the running calculation method. Quasimonotone three-stage scheme, which has the third-order approximation in time for smooth solutions, built on the basis of the scheme first-order approximation in time. Numerical results demonstrate the accuracy of the proposed schemes and their monotonicity in the solution of test problems for the quasilinear Hopf equation.
Keywords: quasilinear hyperbolic equations, compact difference schemes, monotonicity, running calculation method.
@article{MM_2011_23_12_a4,
     author = {B. V. Rogov and M. N. Mikhailovskaya},
     title = {Monotone high-precision compact scheme for quasilinear hyperbolic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--78},
     publisher = {mathdoc},
     volume = {23},
     number = {12},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_12_a4/}
}
TY  - JOUR
AU  - B. V. Rogov
AU  - M. N. Mikhailovskaya
TI  - Monotone high-precision compact scheme for quasilinear hyperbolic equations
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 65
EP  - 78
VL  - 23
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_12_a4/
LA  - ru
ID  - MM_2011_23_12_a4
ER  - 
%0 Journal Article
%A B. V. Rogov
%A M. N. Mikhailovskaya
%T Monotone high-precision compact scheme for quasilinear hyperbolic equations
%J Matematičeskoe modelirovanie
%D 2011
%P 65-78
%V 23
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_12_a4/
%G ru
%F MM_2011_23_12_a4
B. V. Rogov; M. N. Mikhailovskaya. Monotone high-precision compact scheme for quasilinear hyperbolic equations. Matematičeskoe modelirovanie, Tome 23 (2011) no. 12, pp. 65-78. http://geodesic.mathdoc.fr/item/MM_2011_23_12_a4/

[1] Kholodov A. S., “Chislennye metody resheniya uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediya nizkotemperaturnoi plazmy, ch. 2, v. VII-1, Yanus-K, M., 2008, 141–174

[2] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[3] Samarskii A. A., Popov Yu. P., Raznostnye metody resheniya zadach gazovoi dinamiki, Nauka, M., 1992, 424 pp. | MR

[4] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR

[5] Tolstykh A. I., High accuracy non-centered compact difference schemes for fluid dynamics applications, World Scientific, Singapore, 1994, 314 pp. | Zbl

[6] Rogov B. V., Mikhailovskaya M. N., “O skhodimosti kompaktnykh raznostnykh skhem”, Matematicheskoe modelirovanie, 20:1 (2008), 99–116 | MR | Zbl

[7] Rogov B. V., Mikhailovskaya M. N., “Monotonnye bikompaktnye skhemy dlya lineinogo uravneniya perenosa”, Matematicheskoe modelirovanie, 23:6 (2011), 98–110

[8] Tolstykh A. I., “Ob integro-interpolyatsionnykh skhemakh zadannogo poryadka i drugikh prilozheniyakh multioperatornogo printsipa”, ZhVMiMF, 42:11 (2002), 1712–1726 | MR

[9] Tolstykh A. I., Shirobokov D. A., “O raznostnykh skhemakh s kompaktnymi approksimatsiyami pyatogo poryadka dlya prostranstvennykh techenii vyazkogo gaza”, ZhVMiMF, 36:4 (1996), 71–85 | MR | Zbl

[10] Tolstykh A. I., Lipavskii M. V., “On performance of methods with third- and fifth-order compact upwind differencing”, J. Comp. Phys., 140:2 (1998), 205–232 | DOI | MR | Zbl

[11] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[12] Kalitkin N. N., Koryakin P. V., “Bikompaktnye skhemy i sloistye sredy”, DAN, 419:6 (2008), 744–748 | MR | Zbl

[13] Rogov B. V., Mikhailovskaya M. N., “Bikompaktnye skhemy chetvertogo poryadka approksimatsii dlya giperbolicheskikh uravnenii”, DAN, 430:4 (2010), 470–474 | MR | Zbl

[14] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[15] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[16] Ostapenko V. V., 39, Sibirskii matem. zhurnal, no. 5, 1998 | MR | Zbl

[17] Ostapenko V. V., “O silnoi monotonnosti nelineinykh raznostnykh skhem”, ZhVMiMF, 38:7 (1998), 1170–1185 | MR | Zbl

[18] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fizmatlit, M., 2003, 416 pp. | Zbl

[19] Liu X.-D., Osher S., “Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I”, SIAM J. Numer. Anal., 33:2 (1996), 760–779 | DOI | MR | Zbl