Langevin dynamics simulations of micromechanics on graphics processors
Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 133-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

Due to the very long timescales involved (ms–s), theoretical modeling of fundamental biological processes including folding, misfolding, and mechanical unraveling of biomolecules, under physiologically relevant conditions, is challenging even for distributed computing systems. Graphics Processing Units (GPUs) are emerging as an alternative programming platform to the more traditional CPUs as they provide high raw computational power that can be utilized in a wide range of scientific applications. Using a coarse-grained Self Organized Polymer (SOP) model, we have developed and tested the GPU-based implementation of Langevin simulations for proteins (SOP–GPU program). Simultaneous calculation of forces for all particles is implemented using either the particle based or the interacting pair based parallelization, which leads to a ${\sim}90$-fold acceleration compared to an optimized CPU version of the program. We assess the computational performance of an end-to-end application of the SOP–GPU program, where all steps of the algorithm are running on the GPU, by profiling the associated simulation time and memory usage for a number of small proteins, long protein fibers, and large-size protein assemblies. The SOP–GPU package can now be used in the theoretical exploration of the mechanical properties of large-size protein systems to generate the force-extension and force-indentation profiles under the experimental conditions of force application, and to relate the results of singlemolecule experiments in vitro and in silico.
Keywords: graphics processing units, large-size protein systems simulations, self organized polymer model, Langevin dynamics, SOP–GPU package.
@article{MM_2011_23_10_a9,
     author = {A. A. Zhmurov and V. A. Barsegov and S. V. Trifonov and Ya. A. Kholodov and A. S. Kholodov},
     title = {Langevin dynamics simulations of micromechanics on graphics processors},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {133--156},
     publisher = {mathdoc},
     volume = {23},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_10_a9/}
}
TY  - JOUR
AU  - A. A. Zhmurov
AU  - V. A. Barsegov
AU  - S. V. Trifonov
AU  - Ya. A. Kholodov
AU  - A. S. Kholodov
TI  - Langevin dynamics simulations of micromechanics on graphics processors
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 133
EP  - 156
VL  - 23
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_10_a9/
LA  - ru
ID  - MM_2011_23_10_a9
ER  - 
%0 Journal Article
%A A. A. Zhmurov
%A V. A. Barsegov
%A S. V. Trifonov
%A Ya. A. Kholodov
%A A. S. Kholodov
%T Langevin dynamics simulations of micromechanics on graphics processors
%J Matematičeskoe modelirovanie
%D 2011
%P 133-156
%V 23
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_10_a9/
%G ru
%F MM_2011_23_10_a9
A. A. Zhmurov; V. A. Barsegov; S. V. Trifonov; Ya. A. Kholodov; A. S. Kholodov. Langevin dynamics simulations of micromechanics on graphics processors. Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 133-156. http://geodesic.mathdoc.fr/item/MM_2011_23_10_a9/

[1] Stossel T. P., Condeelis J., Cooley L., Hartwig J. H., Noegel A., Schleicher M., Shapiro S. S., Nat. Rev. Mol. Cell Biol., 2 (2001) | DOI

[2] Johnson C. P., Tang H. Y., Carag C., Speicher D. W., Discher D. E., Science, 317 (2007), 663–666 | DOI

[3] Paul R., Heil P., Spatz J. P., Schwarz U. S., Biophys. J., 94 (2008), 1470–1482 | DOI

[4] Leckband D., Curr. Opin. Struct. Biol., 14 (2004), 523–530 | DOI

[5] McEver R. P., Curr. Opin. Cell Biol., 14 (2002), 581–586 | DOI

[6] Marshall B. T., Long M., Piper J. W., Yago T., McEver R. P., Zhu C., Nature, 423 (2003), 190–193 | DOI

[7] Barsegov V., Thirumalai D., Proc. Natl. Acad. Sci. USA, 102 (2005), 1835–1839 | DOI

[8] Weisel J. W., Biophys. Chem., 112 (2004), 267–276 | DOI

[9] Weisel J. W., Science, 320 (2008), 456–457 | DOI

[10] Lord S. T., Curr. Opin. Hematol., 14 (2007), 236–241 ; Box G. E. P., Miller M. E., “A note on the generation of normal random deviates”, Ann. Math. Stat., 29 (1958), 610–611 | DOI | MR | DOI | Zbl

[11] Falvo M. R., Washburn S., Superfine R., Finch M., Brooks J. F. P., et al., Biophys. J., 72 (1997), 1396–1403 | DOI

[12] Uetrecht C., Versluis C., Watts N. R., Roos W. H., Wuite G. J. L., et al., Proc. Natl. Acad. Sci. USA, 105 (2008), 9216–9220 | DOI

[13] Kuznetsov Y. G., Daijogo S., Zhou J., Semler B. L., McPherson A. J., Mol. Biol., 347 (2007), 41–52

[14] Kol N., Shi Y., Barlam D., Shneck R. Z., Kay M. S., et al., Biophys. J., 92 (2007), 1777–1783 | DOI

[15] Ivanovska I. L., de Pablo P. J., Ibarra B., Sgalari G., MacKintosh F. C., et al., Proc. Natl. Acad. Sci. USA, 101 (2004), 7600–7605 | DOI

[16] Ivanovska I., Wuite G., Joensson B., Evilevitch A., Proc. Natl. Acad. Sci. USA, 104 (2007), 9603–9608 | DOI

[17] Steven A. C., BHJ, Cheng N., Trus B. L., Conway J. F., Curr. Opin. Struct. Biol., 15 (2005), 227–236 | DOI

[18] Carrion-Vazquez M., Li H., Lu H., Marszalek P. E., Oberhauser A. F., Fernandez J. M., Nat. Struct. Biol., 10 (2003), 738–743 | DOI

[19] Schwaiger I., Sattler C., Hostetter D. R., Rief M., Nature Mat., 1 (2002), 232–235 | DOI

[20] Brujic J., Hermans R. I., Walther K. A., Fernandez J. M., Nature Phys., 2 (2006), 282–286 | DOI

[21] Brown A. E. X., Litvinov R. I., Discher D. E., Weisel J. W., Biophys. J., 92 (2007), L39–L41 | DOI

[22] Smith D. E., Tans S. J., Smith S. B., Grimes S., Anderson D. L., Bustamante C., Nature, 413 (2001), 748–752 | DOI

[23] Roos W. H., Ivanovska I. L., Evilevitch A., Wuite G., J. L. Cell. Mol. Life Sci., 64 (2007), 1484–1497 | DOI

[24] Brooks B. R., Bruccoleri R. E., Olafson B. D., States D. J., Swaminathan S., Karplus M. J., Comp. Chem., 4 (1983), 187–217 | DOI

[25] Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kalé L., Schulten K., J. Comp. Chem., 26 (2005), 1781–1802 | DOI

[26] Berendsen H. J. C., van der Spoel D., van Drunen R., Comp. Phys. Comm., 91 (1995), 43–56 | DOI

[27] Isralewitz B., Gao M., Schulten K., Curr. Opin. Struct. Biol., 11 (2001), 224–230 | DOI

[28] Stone J. E., Phillips J. C., Freddolino P. L., Hardy D. J., Trabuco L. G., Schulten K., J. Comp. Chem., 28 (2007), 2618–2640 | DOI

[29] Freddolino P. L., Liu F., Gruebele M., Schulten K., Biophys. J., 94 (2008), L75–L77 | DOI

[30] Zink M., Grubmueller H., Biophys. J., 96 (2009), 1767–1777 | DOI

[31] ATI Stream Computing Technical Overview, AMD, 2009

[32] NVIDIA CUDA Programming Guide, version 2.3.1, NVIDIA, 2009

[33] NVIDIA CUDA C Programming Best Practices Guide, version 2.3, NVIDIA, 2009

[34] Munshi A., The OpenCL Specification, version 1.0, Khronos OpenCL Working Group, 2009

[35] Rodrigues C. I., Hardy D. J., Stone J. E., Schulten K., Hwu W.-M.W., “GPU acceleration of cutoff pair potentials for molecular modeling applications”, CF'08: Proceedings of the 5th conference on Computing frontiers, New York, NY, USA, 2008, 273–282

[36] Phillips J. C., Stone J. E., Schulten K., “Adapting a message-driven parallel application to GPUaccelerated clusters”, SC '08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, Piscataway, NJ, USA, 2008, 1–9

[37] Friedrichs M. S., Eastman P., Vaidyanathan V., Houston M., Legrand S., Beberg A. L., Ensign D. L., Bruins C. M., Pande V. S., J. Comp. Chem., 30 (2009), 864–872 | DOI

[38] Davis J. E., Ozsoy A., Patel S., Taufer M., “Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors”, BICoB '09: Proceedings of the 1st International Conference on Bioinformatics and Computational Biology, Berlin–Heidelberg, 2009, 176–186

[39] van Meel J. A., Arnold A., Frenkel D., Zwart S. F. P., Belleman R., Mol. Simul., 34 (2008), 259–266 | DOI

[40] Anderson J. A., Lorentz C. D., Travesset A., J. Comp. Phys., 227 (2008), 5342–5359 | DOI | Zbl

[41] Tozzini V., Curr. Opin. Struct. Biol., 15 (2005), 144–150 | DOI

[42] Clementi C., Nymeyer H., Onuchic J. N., J. Mol. Biol., 298 (2000), 937–953 | DOI

[43] Veitshans T., Klimov D., Thirumalai D., Folding and Design, 2 (1997), 1–22 | DOI

[44] Hyeon C., Dima R. I., Thirumalai D., Structure, 14 (2006), 1633–1645 | DOI

[45] Hyeon C., Onuchic J. N., Proc. Natl. Acad. Sci. USA, 104 (2007), 2175–2180 | DOI

[46] van der Spoel D., Lindahl E., Hess B., Kutzner C., van Buuren A. R., Apol E., Meulenhoff P. J., Tieleman D. P., Sijbers A. L. T. M., Feenstra K. A., van Drunen R., Berendsen H. J. C., GROMACS User Manual, version 4.0, The GROMACS development team, 2009

[47] Levesque D., Verlet L., Kürkijarvi J., Phys. Rev. A, 7 (1973), 1690–1700 | DOI

[48] Box G. E. P., Miller M. E., Ann. Math. Stat., 29 (1958), 610–611 | DOI | Zbl

[49] Nguyen H.(ed.), GPU Gems 3, Addison-Wesley, 2008 | Zbl

[50] Tausworthe R. C., Math. of Comp., 19 (1965), 201–209 | DOI | MR | Zbl

[51] L'Ecuyer P., Math. of Comp., 65 (1996), 203–213 | DOI | MR

[52] Marsaglia G., Published on sci.crypt.

[53] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., Numerical Recipes in C, The Art of Scientific Computing, 2nd ed., Cambridge University Press, 1992 | MR

[54] M. Mickler R. I. D., Dietz H., Hyeon C., Thirumalai D., Rief M., Proc. Natl. Acad. Sci. USA, 104 (2007), 20268–20273 | DOI

[55] Dima R. I., Joshi H., Proc. Natl. Acad. Sci. USA, 105 (2008), 15743–15748 | DOI

[56] Ferguson N., Johnson C. M., Macias M., Oschkinat H., Fersht A. R., Proc. Natl. Acad. Sci. USA, 98 (2001), 13002–13007 | DOI

[57] Karanicolas J., III C. L. B., Proc. Natl. Acad. Sci. USA, 100 (2003), 3954–3959 | DOI

[58] Rief M., Gautel M., Oesterhelt F., Fernandez J., Gaub H., Science, 276 (1997), 1109–1112 | DOI

[59] Dietz H., Rief M., Proc. Natl. Acad. Sci. USA, 101 (2004), 16192–16197 | DOI

[60] Ermak D. L., McCammon J. A., J. Chem. Phys., 69 (1978), 1352–1360 | DOI

[61] Carrion-Vazquez M., Oberhauser A. F., Fisher T. E., Marszalek P. E., Li H., Fernandez J. M., Prog. Biophys. Mol. Biol., 74 (2000), 63–91 | DOI

[62] Doi M., Edwards S., The Theory of Polymer Dynamics, International Series of Monographs on Physics, Oxford Science Publications, 1988

[63] NVIDIA'S Next generation CUDA Compute Architecture: Fermi, version 1.1, NVIDIA, 2009

[64] Carrillo-Tripp M., Shepherd C. M., Borelli I. A., Venkataraman S., Lander G., Natarajan P., Johnson J. E., C. L. Brooks I., Reddy V. S., Nucl. Acid. Res., 37 (2009), D436–D442 | DOI