Modeling of the quasiperiodic processes of adiabatic shear bands formation
Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 117-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

Adiabatic shear bands (ASB) formation in aluminum 7039 Al, depleted uranium DU-0.75Ti and steel HY-100 under shear deformations is considered. We proposed numerical algorithm and finite difference scheme for numerical investigation of the ASB formation processes. It was shown that the processes of ASB formation are quasiperiodic. Evolution of the average stress, temperature and plastic strain rate with time is introduced. It is established that the localization time can be defined using this dependences. The method for calculation the distance between ASB is proposed. This method is based on deformation criterion. We demonstrated the results of distance estimation between ASB in aluminum, depleted uranium and steel.
Keywords: adiabatic shear band; deformation; destruction; material; crack; method of characteristics.
@article{MM_2011_23_10_a8,
     author = {V. I. Koshkin and N. A. Kudryashov and P. N. Ryabov},
     title = {Modeling of the quasiperiodic processes of adiabatic shear bands formation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--132},
     publisher = {mathdoc},
     volume = {23},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_10_a8/}
}
TY  - JOUR
AU  - V. I. Koshkin
AU  - N. A. Kudryashov
AU  - P. N. Ryabov
TI  - Modeling of the quasiperiodic processes of adiabatic shear bands formation
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 117
EP  - 132
VL  - 23
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_10_a8/
LA  - ru
ID  - MM_2011_23_10_a8
ER  - 
%0 Journal Article
%A V. I. Koshkin
%A N. A. Kudryashov
%A P. N. Ryabov
%T Modeling of the quasiperiodic processes of adiabatic shear bands formation
%J Matematičeskoe modelirovanie
%D 2011
%P 117-132
%V 23
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_10_a8/
%G ru
%F MM_2011_23_10_a8
V. I. Koshkin; N. A. Kudryashov; P. N. Ryabov. Modeling of the quasiperiodic processes of adiabatic shear bands formation. Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 117-132. http://geodesic.mathdoc.fr/item/MM_2011_23_10_a8/

[1] Johnson W., “Henri Tresca as the originator of adiabatic heat lines”, Int. J. Mech. Sci., 29:5 (1987), 301–310

[2] Tresca H., “On further applications of the flow of solids”, Proc. Inst. Mech. Engrs., 30 (1878), 301–345 | DOI

[3] Schneider J. A., Nunes A. C.(jr.), “Characterization of plastic flow and resulting microtextures in a friction stir weld”, Metall. Mater. Trans. B, 35 (2004), 777–783 | DOI

[4] Seidel T. U., Reynolds A. P., “Visualization of the material flow in AA2195 friction stir welds using a marker insert technique”, Metall. Mater. Trans., 32A (2001), 2879–2884 | DOI

[5] Moss G. L., “Shear strains, strain rates, temperature changes in adiabatic shear bands”, Shock Waves and High Strain Rate Phenomena in Metals, eds. Meyers L. E., Murr L. E., Plenum Press, New York, 1981, 299–312 | DOI

[6] Marchand A., Duffy J., “An experimental study of the formation process of adiabatic shear bands in a structural steel”, J. Mech. Phys. Solids, 36 (1988), 251–283 | DOI

[7] Kolsky H., “An investigation of the mechanical properties of materials at very. High rates of loading”, Proc. Phys. Soc. London, 62-B (1949), 676 | DOI

[8] Xue Q., Meyers M. A., Nesterenko V. F., “Self organization of shear bands in stainless steel”, Materials Science and Engineering A, 384 (2004), 35–46 | DOI

[9] Nesterenko V. F., Meyers M. A., Wright T. W., “Self-organization in the initiation of adiabatic shear bands”, Acta Mater., 46:1 (1998), 327–340 | DOI

[10] Nesterenko V. F., Meyers M. A., Wright T. W., “Collective behavior of shear bands”, Metallurgical and Materials Application of Shock-Wave and High-Strain-Rate Phenomena, eds. Murr L. E., Staudhammer K. P., Meyers M. A., Elsevier Science, Amsterdam, 1995, 397–404

[11] Wright T. W., Ockendon H., “A scaling law for the effect of inertia on the formation of adiabatic shear bands”, Int. J. Plasticity, 12:7 (1996), 927–934 | DOI | Zbl

[12] Grady D. E., Kipp M. E., “The growth of unstable thermoplastic shear with application to steadywave shock compression in solids”, J. Mech. Phys. Solids, 35:1 (1987), 95–118 | DOI | Zbl

[13] Molinari A., “Collective behavior and spacing of adiabatic shear bands”, J. Mech. Phys. Solids, 45:9 (1997), 1551–1575 | DOI | MR | Zbl

[14] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978, 687 pp. | MR

[15] Koshkin V. I., Kudryashov N. A., Ryabov P. N., “Chislennoe modelirovanie obrazovaniya polos adiabaticheskogo sdviga v materialakh pri deformatsiyakh”, Yadernaya fizika i Inzhiniring, 1:5 (2010), 465–474 | MR

[16] Formalev V. F., Reviznikov D. L., Chislennye metody, Fizmatlit, 2004, 400 pp.

[17] Metyuz D. G., Fink K. D., Chislennye metody – ispolzovanie MATLAB, Vilyams, M., 2001, 750 pp.

[18] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[19] Walter J. W., “Numerical experiments on adiabatic shear band formation in one dimension”, International Journal of Plasticity, 8 (1992), 657–693 | DOI