Numerical study of anisotropy of wave responses from fractured reservoir by grid-characteristic method
Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 97-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this article is to study the problem of propagation of near-surface disturbance in massive rocks containing heterogeneities – empty or filled cracks. The numerical solution of wave propagation problems in such a heterogeneous media obtained. Parameters of the response from fractured reservoir depending on the parameters of the problem investigated: cracks distribution density, fractured reservoir extent, the number of cracks, initial disturbance locations, cracks inclination, disturbance frequency. The concept of response anisotropy introduced; dependence of the anisotropy of the above parameters studied. The authors use grid-characteristic method on triangular mesh with boundary conditions at the interface between rock and crack, as well as on free surfaces in explicit form. The proposed numerical method is suitable for investigation of the interaction of seismic waves with heterogeneous inclusions, as it allows designing the most accurate numerical algorithms at the boundaries of integration area and the media contacts.
Keywords: computational methods; computer science; mathematical modeling; parallel computing; continuum mechanics; exploration seismology.
@article{MM_2011_23_10_a6,
     author = {I. E. Kvasov and I. B. Petrov},
     title = {Numerical study of anisotropy of wave responses from fractured reservoir by grid-characteristic method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--106},
     publisher = {mathdoc},
     volume = {23},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_10_a6/}
}
TY  - JOUR
AU  - I. E. Kvasov
AU  - I. B. Petrov
TI  - Numerical study of anisotropy of wave responses from fractured reservoir by grid-characteristic method
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 97
EP  - 106
VL  - 23
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_10_a6/
LA  - ru
ID  - MM_2011_23_10_a6
ER  - 
%0 Journal Article
%A I. E. Kvasov
%A I. B. Petrov
%T Numerical study of anisotropy of wave responses from fractured reservoir by grid-characteristic method
%J Matematičeskoe modelirovanie
%D 2011
%P 97-106
%V 23
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_10_a6/
%G ru
%F MM_2011_23_10_a6
I. E. Kvasov; I. B. Petrov. Numerical study of anisotropy of wave responses from fractured reservoir by grid-characteristic method. Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 97-106. http://geodesic.mathdoc.fr/item/MM_2011_23_10_a6/

[1] Magomedov K. M., Kholodov A. S., Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988, 288 pp. | MR

[2] Biot M. A., “Mechanics of deformation and acoustic propagation in porous media”, J. Apple Physics, 33:4 (1962), 1482–1498 | DOI | MR | Zbl

[3] Hsu C. J., Schoenberg M., “Elastic waves through a simulated fractured medium”, Geophysics, 58:7 (1993), 964–977 | DOI

[4] Molotkov L. A., Bakulin A. V., “Effektivnaya model sloistoi uprugo-poristoi sredy”, DAN, 372:1 (2000), 108–112

[5] Kozlov E. A., “Pressure-dependent seismic response of fractured rock”, Geophysics, 1969, 885–897

[6] Thomsen L., “Weak elastic anisotropy”, Geophysics, 51 (1986), 1954–1966 | DOI

[7] Hudson J. A., “Wave speeds and attention of elastic waves in materials containing cracs”, Geophysical Journal of the Royal Astronomical Society, 64 (1981), 133–150 | DOI | Zbl

[8] Kondaurov V. I., Fortov V. E., Osnovy termomekhaniki kondensirovannoi sredy, MFTI, M., 2002, 336 pp.

[9] Novatskii V. K., Teoriya uprugosti, Mir, M., 1975, 872 pp. | MR

[10] Kozlov E. A., Modeli sredy v razvedochnoi seismologii, GERS, M., 2006, 480 pp.

[11] Ivanov V. D., Kondaurov V. N., Petrov I. B., Kholodov A. S., “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matematicheskoe modelirovanie, 15:10 (2003), 11–29 | MR | Zbl

[12] Petrov I. B., Kholodov A. S., “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Zh. vychisl. matem. i matem. fiz., 24:5 (1984), 722–739 | MR | Zbl

[13] Kvasov I. E., Petrov I. B., Chelnokov F. B., “Raschet volnovykh protsessov v neodnorodnykh prostranstvennykh konstruktsiyakh”, Matematicheskoe modelirovanie, 21:5 (2009), 3–9 | Zbl

[14] Kvasov I. E., Pankratov S. A., Petrov I. B., “Chislennoe modelirovanie seismicheskikh otklikov v mnogosloinykh geologicheskikh sredakh setochno-kharakteristicheskim metodom”, Matematicheskoe modelirovanie, 22:9 (2010), 13–22 | Zbl

[15] Levyant V. B., Petrov I. B., Chelnokov F. B., “Klasternaya priroda seismicheskoi energii, rasseyannoi ot zony diffuznoi kaverznosti i treschinovatosti v massivnykh porodakh”, Geofizika, 2005, no. 6, 5–19