Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2011_23_10_a2, author = {O. V. Galtsev and A. M. Meirmanov}, title = {Numerical homogenization in the {Rayleigh--Taylor} problem of filtering two immiscible incompressible liquids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {33--43}, publisher = {mathdoc}, volume = {23}, number = {10}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2011_23_10_a2/} }
TY - JOUR AU - O. V. Galtsev AU - A. M. Meirmanov TI - Numerical homogenization in the Rayleigh--Taylor problem of filtering two immiscible incompressible liquids JO - Matematičeskoe modelirovanie PY - 2011 SP - 33 EP - 43 VL - 23 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2011_23_10_a2/ LA - ru ID - MM_2011_23_10_a2 ER -
%0 Journal Article %A O. V. Galtsev %A A. M. Meirmanov %T Numerical homogenization in the Rayleigh--Taylor problem of filtering two immiscible incompressible liquids %J Matematičeskoe modelirovanie %D 2011 %P 33-43 %V 23 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2011_23_10_a2/ %G ru %F MM_2011_23_10_a2
O. V. Galtsev; A. M. Meirmanov. Numerical homogenization in the Rayleigh--Taylor problem of filtering two immiscible incompressible liquids. Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 33-43. http://geodesic.mathdoc.fr/item/MM_2011_23_10_a2/
[1] Fermi E., Nauchnye trudy, v. 2, Nauka, M., 1972
[2] Birkgof G., “Neustoichivost Gelmgoltsa i Teilora”, Gidrodinamicheskaya neustoichivost, Mir, M., 1964, 68–94
[3] Inogamov N. A., “Turbulent stage of the Rayleigh-Taylor”, Sov. Tech. Phys. Lett., 4:6 (1978), 299–300
[4] Lord Rayleigh, Theory of sound, v. 2, Dover Publications Inc., N. Y., 1984
[5] Taylor G., “The instability of liquid surface when accelerated in a direction perpendicular to their plans, I”, Proc. Roy. Soc. Ser. A, 201 (1950), 192–196 | DOI | MR | Zbl
[6] Lewis D. G., “The instability of liquid surface when accelerated in a direction perpendicular to their plans, II”, Proc. Roy. Soc. Ser. A, 202 (1950), 81–96 | DOI
[7] Birkhoff G., Los Alamos Scientific Lab, Rept. No LA-1982, Los Alamos, 1955
[8] Belenkii S. Z., Fradkin E. S., “Teoriya turbulentnogo peremeshivaniya”, Tr. FIAN SSSR, 29, 1965, 207–238
[9] Antontsev S., Meirmanov A., Yurinsky B., “A Free Boundary Problem for Stokes Equations: Classical Solutions”, Interfaces and Free Boundaries, 2:4 (2000), 413–424 | DOI | MR | Zbl
[10] Galtsev O. V., Galtseva O. A., “O chislennom modelirovanii zadachi Masketa so svobodnoi granitsei”, Nauchnyi vestnik BelGU, 2011
[11] Guschin V. A., Schennikov V. V., “Ob odnom chislennom metode resheniya uravnenii Nave–Stoksa”, ZhVM i MF, 14:2 (1974), 512–520
[12] Daly B. J., “Numerical study of two fluid Rayleigh-Taylor instability”, Phys. Fluids, 10:2 (1967), 297–307 | DOI | Zbl
[13] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | DOI | Zbl
[14] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1984, 520 pp. | MR
[15] Vladimirova N. N., Kuznetsov B. G., Yanenko N. N., “Chislennye raschety simmetrichnogo obtekaniya plastinki ploskim potokom vyazkoi neszhimaemoi zhidkosti”, Nekotorye voprosy vychislitelnoi i prikladnoi matematiki, Nauka, Novosibirsk, 1996, 186–192