Numerical homogenization in the Rayleigh--Taylor problem of filtering two immiscible incompressible liquids
Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 33-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present work is devoted to the plane motion of two immiscible incompressible fluids with different densities, separated by a surface of contact discontinuity in the elastic pore space. We discuss results of numerical calculations of the exact models on the microscopic level with a free boundary for the absolutely rigid skeleton and for the elastic skeleton. There is a small parameter $\varepsilon$ in the model, equal to the ratio average pore size to the size of the hole domain. If we decrease parameter $\varepsilon$, then solutions of the model on the microscopic level describe averaged picture of two immiscible liquids movement. In this case, the movement of fluids in the elastic skeleton preserve the surface of a contact discontinuity, while for the motion of fluids in an absolutely rigid skeleton instead of without free boundary occurs some mixed zone (mushy region), occupied by a mixture of two fluids.
Keywords: Stokes and Lame equations, free boundary problem, poroelasticity.
Mots-clés : fluid filtration
@article{MM_2011_23_10_a2,
     author = {O. V. Galtsev and A. M. Meirmanov},
     title = {Numerical homogenization in the {Rayleigh--Taylor} problem of filtering two immiscible incompressible liquids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--43},
     publisher = {mathdoc},
     volume = {23},
     number = {10},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2011_23_10_a2/}
}
TY  - JOUR
AU  - O. V. Galtsev
AU  - A. M. Meirmanov
TI  - Numerical homogenization in the Rayleigh--Taylor problem of filtering two immiscible incompressible liquids
JO  - Matematičeskoe modelirovanie
PY  - 2011
SP  - 33
EP  - 43
VL  - 23
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2011_23_10_a2/
LA  - ru
ID  - MM_2011_23_10_a2
ER  - 
%0 Journal Article
%A O. V. Galtsev
%A A. M. Meirmanov
%T Numerical homogenization in the Rayleigh--Taylor problem of filtering two immiscible incompressible liquids
%J Matematičeskoe modelirovanie
%D 2011
%P 33-43
%V 23
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2011_23_10_a2/
%G ru
%F MM_2011_23_10_a2
O. V. Galtsev; A. M. Meirmanov. Numerical homogenization in the Rayleigh--Taylor problem of filtering two immiscible incompressible liquids. Matematičeskoe modelirovanie, Tome 23 (2011) no. 10, pp. 33-43. http://geodesic.mathdoc.fr/item/MM_2011_23_10_a2/

[1] Fermi E., Nauchnye trudy, v. 2, Nauka, M., 1972

[2] Birkgof G., “Neustoichivost Gelmgoltsa i Teilora”, Gidrodinamicheskaya neustoichivost, Mir, M., 1964, 68–94

[3] Inogamov N. A., “Turbulent stage of the Rayleigh-Taylor”, Sov. Tech. Phys. Lett., 4:6 (1978), 299–300

[4] Lord Rayleigh, Theory of sound, v. 2, Dover Publications Inc., N. Y., 1984

[5] Taylor G., “The instability of liquid surface when accelerated in a direction perpendicular to their plans, I”, Proc. Roy. Soc. Ser. A, 201 (1950), 192–196 | DOI | MR | Zbl

[6] Lewis D. G., “The instability of liquid surface when accelerated in a direction perpendicular to their plans, II”, Proc. Roy. Soc. Ser. A, 202 (1950), 81–96 | DOI

[7] Birkhoff G., Los Alamos Scientific Lab, Rept. No LA-1982, Los Alamos, 1955

[8] Belenkii S. Z., Fradkin E. S., “Teoriya turbulentnogo peremeshivaniya”, Tr. FIAN SSSR, 29, 1965, 207–238

[9] Antontsev S., Meirmanov A., Yurinsky B., “A Free Boundary Problem for Stokes Equations: Classical Solutions”, Interfaces and Free Boundaries, 2:4 (2000), 413–424 | DOI | MR | Zbl

[10] Galtsev O. V., Galtseva O. A., “O chislennom modelirovanii zadachi Masketa so svobodnoi granitsei”, Nauchnyi vestnik BelGU, 2011

[11] Guschin V. A., Schennikov V. V., “Ob odnom chislennom metode resheniya uravnenii Nave–Stoksa”, ZhVM i MF, 14:2 (1974), 512–520

[12] Daly B. J., “Numerical study of two fluid Rayleigh-Taylor instability”, Phys. Fluids, 10:2 (1967), 297–307 | DOI | Zbl

[13] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, Journal of Acoustic Society of America, 70:4 (1981), 1140–1146 | DOI | Zbl

[14] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1984, 520 pp. | MR

[15] Vladimirova N. N., Kuznetsov B. G., Yanenko N. N., “Chislennye raschety simmetrichnogo obtekaniya plastinki ploskim potokom vyazkoi neszhimaemoi zhidkosti”, Nekotorye voprosy vychislitelnoi i prikladnoi matematiki, Nauka, Novosibirsk, 1996, 186–192