On calculation of the electric potential for 2D silicon transistor with a silicon oxide nanochannel
Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 79-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem on calculation of the electric potential for the 2D silicon transistor occupying a domain $\Omega$ with an adjoint silicon oxide nanochannel occupying a domain $\Omega_G$. By numerical simulations we justify the reduction of this problem in the domain $\Omega\cup\Omega_G$ to that for finding the potential only in the domain $\Omega$.
Keywords: hydrodynamical model, metal oxide semiconductor field effect transistor, the parabolic regularization, longitudinal-transverse sweep method.
Mots-clés : the Poisson equation
@article{MM_2010_22_9_a5,
     author = {A. M. Blokhin and A. S. Ibragimova},
     title = {On calculation of the electric potential for {2D} silicon transistor with a silicon oxide nanochannel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--94},
     publisher = {mathdoc},
     volume = {22},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_9_a5/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - A. S. Ibragimova
TI  - On calculation of the electric potential for 2D silicon transistor with a silicon oxide nanochannel
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 79
EP  - 94
VL  - 22
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_9_a5/
LA  - ru
ID  - MM_2010_22_9_a5
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A A. S. Ibragimova
%T On calculation of the electric potential for 2D silicon transistor with a silicon oxide nanochannel
%J Matematičeskoe modelirovanie
%D 2010
%P 79-94
%V 22
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_9_a5/
%G ru
%F MM_2010_22_9_a5
A. M. Blokhin; A. S. Ibragimova. On calculation of the electric potential for 2D silicon transistor with a silicon oxide nanochannel. Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 79-94. http://geodesic.mathdoc.fr/item/MM_2010_22_9_a5/

[1] Anile A. M., Romano V., “Non parabolic band transport in semiconductors: closure of the moment equations”, Cont. Mech. Thermodyn., 11 (1999), 307–325 | DOI | MR | Zbl

[2] Romano V., “Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Cont. Mech. Thermodyn., 12 (2000), 31–51 | DOI | MR | Zbl

[3] Romano V., “2D simulation of a silicon MESFET with a non-parabolic hydrodynamical model based on the maximum entropy principle”, J. Comp. Phys., 176 (2002), 70–92 | DOI | Zbl

[4] Blokhin A. M., Bushmanov R. S., Rudometova A. S., Romano V., “Linear asymptotic stability of the equilibrium state for the 2D MEP hydrodynamical model of charge transport in semiconductors”, Nonlinear Analysis, 65 (2006), 1018–1038 | DOI | MR | Zbl

[5] Romano V., “2D Numerical Simulation of the MEP Energy-Transport Model with a Finite Difference Scheme”, J. Comp. Fhys., 221 (2007), 439–468 | DOI | MR | Zbl

[6] Blokhin A. M., Ibragimova A. S., Semisalov B. V., “Konstruirovanie vychislitelnogo algoritma dlya sistemy momentnykh uravnenii, opisyvayuschikh perenos zaryada v poluprovodnikakh”, Matematicheskoe modelirovanie, 21:4 (2009), 15–34 | MR | Zbl

[7] Blokhin A. M., Ibragimova A. S., “Numerical method for 2D Simulation of a Silicon MESFET with a Hydrodynamical Model Based on the Maximum Entropy Principle”, SIAM J. Sci. Comput., 31:3 (2009), 2015–2046 | DOI | MR | Zbl

[8] Blokhin A. M., Ibragimova A. S., “1D Numerical Simulation of the MEP Mathematical Model in ballistic diode problem”, Journal of Kinetic and Related Models, 2:1 (2009), 81–107 | DOI | MR | Zbl

[9] Blokhin A. M., Boyarskiy S. A., Semisalov B. V., “On an approach to the construction of difference schemes for the moment equations of charge transport in semiconductors”, Le Matematiche, 64:1 (2009), 77–91 | MR | Zbl

[10] Lab C., Caussignac P., “An energy-transport model for semiconductor heterostructure devices: application to AlGaAs/GaAs MODFETs”, COMPEL, 18:1 (1999), 61–76 | Zbl

[11] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967, 197 pp. | Zbl

[12] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy (vvedenie v teoriyu), Nauka, M., 1977, 440 pp. | MR