Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_9_a5, author = {A. M. Blokhin and A. S. Ibragimova}, title = {On calculation of the electric potential for {2D} silicon transistor with a silicon oxide nanochannel}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {79--94}, publisher = {mathdoc}, volume = {22}, number = {9}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_9_a5/} }
TY - JOUR AU - A. M. Blokhin AU - A. S. Ibragimova TI - On calculation of the electric potential for 2D silicon transistor with a silicon oxide nanochannel JO - Matematičeskoe modelirovanie PY - 2010 SP - 79 EP - 94 VL - 22 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2010_22_9_a5/ LA - ru ID - MM_2010_22_9_a5 ER -
%0 Journal Article %A A. M. Blokhin %A A. S. Ibragimova %T On calculation of the electric potential for 2D silicon transistor with a silicon oxide nanochannel %J Matematičeskoe modelirovanie %D 2010 %P 79-94 %V 22 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2010_22_9_a5/ %G ru %F MM_2010_22_9_a5
A. M. Blokhin; A. S. Ibragimova. On calculation of the electric potential for 2D silicon transistor with a silicon oxide nanochannel. Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 79-94. http://geodesic.mathdoc.fr/item/MM_2010_22_9_a5/
[1] Anile A. M., Romano V., “Non parabolic band transport in semiconductors: closure of the moment equations”, Cont. Mech. Thermodyn., 11 (1999), 307–325 | DOI | MR | Zbl
[2] Romano V., “Non parabolic band transport in semiconductors: closure of the production terms in the moment equations”, Cont. Mech. Thermodyn., 12 (2000), 31–51 | DOI | MR | Zbl
[3] Romano V., “2D simulation of a silicon MESFET with a non-parabolic hydrodynamical model based on the maximum entropy principle”, J. Comp. Phys., 176 (2002), 70–92 | DOI | Zbl
[4] Blokhin A. M., Bushmanov R. S., Rudometova A. S., Romano V., “Linear asymptotic stability of the equilibrium state for the 2D MEP hydrodynamical model of charge transport in semiconductors”, Nonlinear Analysis, 65 (2006), 1018–1038 | DOI | MR | Zbl
[5] Romano V., “2D Numerical Simulation of the MEP Energy-Transport Model with a Finite Difference Scheme”, J. Comp. Fhys., 221 (2007), 439–468 | DOI | MR | Zbl
[6] Blokhin A. M., Ibragimova A. S., Semisalov B. V., “Konstruirovanie vychislitelnogo algoritma dlya sistemy momentnykh uravnenii, opisyvayuschikh perenos zaryada v poluprovodnikakh”, Matematicheskoe modelirovanie, 21:4 (2009), 15–34 | MR | Zbl
[7] Blokhin A. M., Ibragimova A. S., “Numerical method for 2D Simulation of a Silicon MESFET with a Hydrodynamical Model Based on the Maximum Entropy Principle”, SIAM J. Sci. Comput., 31:3 (2009), 2015–2046 | DOI | MR | Zbl
[8] Blokhin A. M., Ibragimova A. S., “1D Numerical Simulation of the MEP Mathematical Model in ballistic diode problem”, Journal of Kinetic and Related Models, 2:1 (2009), 81–107 | DOI | MR | Zbl
[9] Blokhin A. M., Boyarskiy S. A., Semisalov B. V., “On an approach to the construction of difference schemes for the moment equations of charge transport in semiconductors”, Le Matematiche, 64:1 (2009), 77–91 | MR | Zbl
[10] Lab C., Caussignac P., “An energy-transport model for semiconductor heterostructure devices: application to AlGaAs/GaAs MODFETs”, COMPEL, 18:1 (1999), 61–76 | Zbl
[11] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967, 197 pp. | Zbl
[12] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy (vvedenie v teoriyu), Nauka, M., 1977, 440 pp. | MR