Simulation of two-component mixture separation by zone electrophoresis
Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 146-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

Separation of two-component mixture under action of an electric field is investigated. We assume that conductivity is depended on concentration components of mixture. This problem is known as zone electrophoresis. Depending on initial conditions diffusionless approximation of the model is described by the system of equations which can be either hyperbolic or elliptic. For the case of hyperbolicity the system is transformed to Riemann invariants and is analyzed by the method of characteristics. We considered cases when a shock wave interacts with another one or with a rarefaction wave. Solutions for each stage of separation process are obtained.
Keywords: zone electrophoresis, systems of hydrodynamic type, Riemann problem, waves interaction.
@article{MM_2010_22_9_a10,
     author = {M. S. Elaeva},
     title = {Simulation of two-component mixture separation by zone electrophoresis},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {146--160},
     publisher = {mathdoc},
     volume = {22},
     number = {9},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_9_a10/}
}
TY  - JOUR
AU  - M. S. Elaeva
TI  - Simulation of two-component mixture separation by zone electrophoresis
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 146
EP  - 160
VL  - 22
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_9_a10/
LA  - ru
ID  - MM_2010_22_9_a10
ER  - 
%0 Journal Article
%A M. S. Elaeva
%T Simulation of two-component mixture separation by zone electrophoresis
%J Matematičeskoe modelirovanie
%D 2010
%P 146-160
%V 22
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_9_a10/
%G ru
%F MM_2010_22_9_a10
M. S. Elaeva. Simulation of two-component mixture separation by zone electrophoresis. Matematičeskoe modelirovanie, Tome 22 (2010) no. 9, pp. 146-160. http://geodesic.mathdoc.fr/item/MM_2010_22_9_a10/

[1] Babskii V. G., Zhukov M. Yu., Yudovich V. I., Matematicheskaya teoriya elektroforeza: Primenenie k metodam fraktsionirovaniya biopolimerov, Naukova dumka, Kiev, 1983, 202 pp.

[2] Mosher R. A., Saville D. A., Thorman W., The Dynamics of Electrophoresis, VCH Publishers, New York, 1992, 236 pp.

[3] Zhukov M. Yu., Massoperenos elektricheskim polem, Izdatelstvo Rostovskogo Universiteta, Rostov-na-Donu, 2005, 215 pp.

[4] Moore G. T., “Theory of isotachophoresis. Development of concentration boundaries”, Journal of Chromatography, 106:1 (1975), 1–16 | DOI

[5] Zhukov M. Yu., “Nestatsionarnaya model izotakhoforeza”, ZhVM i MF, 24:4 (1984), 549–565 | MR

[6] Konstantinov B. P., Oshurkova O. V., “Ekspressnyi mikroanaliz khimicheskikh elementov metodom dvizhuscheisya granitsy”, Doklady AN SSSR, 148:5 (1963), 1110–1113

[7] Konstantinov B. P., Oshurkova O. V., “Mikroanaliz aminokislot po podvizhnostyam ionov”, Doklady AN SSSR, 175:1 (1967), 113–116

[8] Ferapontov E. V., Tsarev S. P., “Sistemy gidrodinamicheskogo tipa, voznikayuschie v gazovoi khromatografii. Invarianty Rimana i tochnye resheniya”, Matematicheskoe modelirovanie, 3:2 (1991), 82–91 | MR | Zbl

[9] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Seriya Matematicheskaya, 54:5 (1990), 1048–1067

[10] Pavlov M. V., Gamiltonov formalizm uravnenii elektroforeza. Integriruemye uravneniya gidrodinamiki, preprint No 17, ITF im. L. D. Landau, M., 1987

[11] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978, 668 pp. | MR

[12] Haglund H., “Isotachophoresis”, Sci. Tools, 17:1 (1970), 2–13

[13] Uilyais B., Uilson K. (red.), Metody prakticheskoi biokhimii, Mir, M., 1978, 270 pp.

[14] Lax P. D., “Hyperbolic systems of conservation law, II”, Comm. Pure Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl