Blowup/scattering alternative for a~discrete family of static critical solutions with various number of unstable eigenmodes
Matematičeskoe modelirovanie, Tome 22 (2010) no. 8, pp. 119-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

Decay of regular static spherically symmetric solutions in the SU(2) Yang-Mills-dilaton (YMd) system of equations under the independent excitation of their unstable eigenmodes has been studied self-consistently in the nonlinear regime. We have obtained strong numerical evidences that all static YMd solutions are distinct local threshold configurations, separating blowup and scat-tering solutions and the main unstable eigenmodes are only those responsible for the blowup/scattering alternative. On the other hand excitation of higher unstable eigenmodes always leads to finite-time blowup. The decay of the lowest $N=1$ static YMd solution is an exceptional case because the resulting waves reveal features peculiar to solitons.
Keywords: nonlinear wave equations, blowup solutions, self-similar solutions.
@article{MM_2010_22_8_a9,
     author = {Evgeny E. Donets and Edik A. Hayryan and Oksana I. Streltsova},
     title = {Blowup/scattering alternative for a~discrete family of static critical solutions with various number of unstable eigenmodes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {119--144},
     publisher = {mathdoc},
     volume = {22},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_8_a9/}
}
TY  - JOUR
AU  - Evgeny E. Donets
AU  - Edik A. Hayryan
AU  - Oksana I. Streltsova
TI  - Blowup/scattering alternative for a~discrete family of static critical solutions with various number of unstable eigenmodes
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 119
EP  - 144
VL  - 22
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_8_a9/
LA  - ru
ID  - MM_2010_22_8_a9
ER  - 
%0 Journal Article
%A Evgeny E. Donets
%A Edik A. Hayryan
%A Oksana I. Streltsova
%T Blowup/scattering alternative for a~discrete family of static critical solutions with various number of unstable eigenmodes
%J Matematičeskoe modelirovanie
%D 2010
%P 119-144
%V 22
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_8_a9/
%G ru
%F MM_2010_22_8_a9
Evgeny E. Donets; Edik A. Hayryan; Oksana I. Streltsova. Blowup/scattering alternative for a~discrete family of static critical solutions with various number of unstable eigenmodes. Matematičeskoe modelirovanie, Tome 22 (2010) no. 8, pp. 119-144. http://geodesic.mathdoc.fr/item/MM_2010_22_8_a9/

[1] Choptuik M. W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70:1 (1993), 9–12 | DOI

[2] Choptuik M. W., Chmaj T., Bizon P., “Critical Behaviour in Gravitational Collapse of a Yang-Mills Field”, Phys. Rev. Lett., 77:3 (1996), 424–427 | DOI

[3] Lechner Ch., Thornburg J., Husa S., Aichelburg P. C., “New transition between discrete and continuous self-similarity in critical gravitational collapse”, Phys. Rev. D, 65 (2002), 081501(R) | DOI | MR

[4] Gundlach C., “Echoing and scaling in Einstein–Yang–Mills critical collapse”, Phys. Rev. D, 6002 (1997) ; Living Rev. Relativity, 2 (1999), 4 ; Phys. Rept., 2 (2003) | MR | MR | Zbl | MR

[5] Bizon P., “Formation of singularities in Yang–Mills equations”, Acta Phys. Polon. B, 33 (2002), 1893–1922 | MR | Zbl

[6] Bizon P., Tabor Z., “On blowup for Yang–Mills fields”, Phys. Rev. D, 64 (2001), 121701(R) | DOI | MR

[7] Bizon P., Chmaj T., Tabor Z., “Dispersion and collapse of wave maps”, Nonlinearity, 13 (2000), 1411 | DOI | MR | Zbl

[8] Bizon P., Chmaj T., Tabor Z., “Formation of singularities for equivariant 2+1 dimensional wave maps into the 2-sphere”, Nonlinearity, 14 (2001), 1041 | DOI | MR | Zbl

[9] Donets E. E., Streltsova O. I., Boyadjiev T. L., “Self-similarity and singularity formation in a coupled system of Yang–Mills-dilaton evolution equations”, Phys. Rev. D, 68 (2003), 125010 | DOI | MR

[10] Liebling S. L., Hirschmann E. W., Isenberg J., “Critical Phenomena in Nonlinear Sigma Models”, J. Math. Phys., 41 (2000), 5691–5700, arXiv: math-ph/9911020 | DOI | MR | Zbl

[11] Isenberg J., Liebling S. L., “Singularity Formation in 2+1 Wave Maps”, J. Math. Phys., 43 (2002), 678–683 | DOI | MR | Zbl

[12] Liebling S. L., “The Singularity Threshold of the Nonlinear Sigma Model Using 3D Adaptive Mesh Refinement”, Phys. Rev. D, 66 (2002), 041703(R) | DOI

[13] Liebling S. L., “Threshold of Singularity Formation in the Semilinear Wave Equation”, Phys. Rev. D, 71 (2005), 044019 | DOI | MR

[14] Krieger J., Schlag W., On the focusing critical semi-linear wave equation, arXiv: math.AP/0508574 | MR

[15] Bizon P., Chmaj T., Tabor Z., “On blowup for semilinear wave equations with a focusing nonlinearity”, Nonlinearity, 17 (2004), 2187 | DOI | MR | Zbl

[16] Aichelburg P. C., Bizon P., Tabor Z., “Bifurcation and fine structure phenomena in critical collapse of a self-gravitating $\sigma$-field”, Class. Quant. Grav., 23 (2006), S299 | DOI | MR | Zbl

[17] Bizon P., Chmaj T., Schmidt Bernd G., “Codimension-two critical behavior in vacuum gravitational collapse”, Phys. Rev. Lett., 97 (2006), 131101 | DOI

[18] Bartnik R., McKinnon J., “Particlelike solutions of the Einstein–Yang–Mills equations”, Phys. Rev. Lett., 61 (1988), 141–144 | DOI | MR

[19] Lavrelashvili G., Maison D., “Static spherically symmetric solutions of a Yang–Mills field coupled to a dilaton”, Phys. Lett. B, 295 (1992), 67–72 | DOI | MR

[20] Klainerman S., “On the regularity of classical field theories in Minkowski spacetime”, Progress in Nonlinear Differential Equations and Their Applications, 29, Birkhäuser, 1997 | MR | Zbl

[21] Szpak N., “Relaxation to intermediate attractors in nonlinear wave equations”, Theor. and Math. Phys., 127:3 (2001), 817–826 | DOI | MR | Zbl

[22] Streltsova O. I., Donets E. E., Hayryan E. A., Georgieva D. A., Boyadjiev T. L., “Unstable even-parity eigenmodes of the regular static $SU(2)$ Yang–Mills-dilaton solutions”, J. Comp. Math. and Math. Phys., 45:5 (2005), 925–937, arXiv: gr-qc/0408060 | MR

[23] Airyan E. A., Busha Ya., Donets E. E., Pokorny I., Streltsova O. I., “Chislennoe issledovanie raspada vozmuschennykh statsionarnykh reshenii sistemy uravnenii Yanga–Millsa s dilatonom s ispolzovaniem tekhnologii MPI”, Matem. model., 17:6 (2005), 103–121 | Zbl

[24] Poisson E., Israel W., “Internal structure of black holes”, Phys. Rev. D, 41 (1990), 1796 | DOI | MR

[25] Belinskii V. A., Khalatnikov I. M., “K voprosu o kharaktere osobennostei v obschikh resheniyakh uravnenii gravitatsii”, ZhETF, 56:5 (1969), 1700–1712 ; V. A. Belinskii, I. M. Khalatnikov, E. M. Lifshitz, Adv. Phys., 19 (1970), 525 ; Sov. Phys. Usp., 13 (1971), 745 ; C. W. Misner, Phys. Rev. Lett., 22 (1969), 1071 | DOI | DOI | DOI | Zbl