Numeric simulation of hexogonal nanoscale structure arrays formation in anodic aluminium oxide
Matematičeskoe modelirovanie, Tome 22 (2010) no. 8, pp. 97-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article self-organization of nanoscale porous structure arrays in anodic metal oxide is considered. The mathematical model of the chemical reaction at the metal-oxide and oxide-electrolyte interfases is described. A weakly nonlinear analysis near the instability threshold result in two dimensional Kuramoto–Sivashinsky equation. Solution of this equation provides the same regular hexagonal pore arrays that are observed in physical experiments. In this work two stage complex Rosenbrock scheme, developed by author, is applied for numeric simulation of this problem. High accuracy $O(\tau^4)$ and L1-stability along with low complexity of this method allow to use conventional PC to perform calculations.
Keywords: Aluminium oxide, Hexagonal porous array, Kuramoto–Sivashinsky equation, numerical solution of ODE, stiff ODE, Rosenbrock method.
@article{MM_2010_22_8_a7,
     author = {A. G. Limonov},
     title = {Numeric simulation of hexogonal nanoscale structure arrays formation in anodic aluminium oxide},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {22},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_8_a7/}
}
TY  - JOUR
AU  - A. G. Limonov
TI  - Numeric simulation of hexogonal nanoscale structure arrays formation in anodic aluminium oxide
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 97
EP  - 108
VL  - 22
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_8_a7/
LA  - ru
ID  - MM_2010_22_8_a7
ER  - 
%0 Journal Article
%A A. G. Limonov
%T Numeric simulation of hexogonal nanoscale structure arrays formation in anodic aluminium oxide
%J Matematičeskoe modelirovanie
%D 2010
%P 97-108
%V 22
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_8_a7/
%G ru
%F MM_2010_22_8_a7
A. G. Limonov. Numeric simulation of hexogonal nanoscale structure arrays formation in anodic aluminium oxide. Matematičeskoe modelirovanie, Tome 22 (2010) no. 8, pp. 97-108. http://geodesic.mathdoc.fr/item/MM_2010_22_8_a7/

[1] P. O'Sullivan, G. C. Wood, Proc. R. Soc. A, 317 (1970), 511 | DOI

[2] J. O. Bockris, A. K. N. Reddy, Modern Electrochemistry, v. 2, New York, 1970

[3] F. Muller, O. Jessensky, U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina”, Appl. Phys. Lett., 72 (1998), 1173 | DOI

[4] E. Hairer, G. Wanner, Solving Ordinary Differential Equations, v. 2, Stiff and Differential-Algebraic Problems, 2nd ed., Springer-Verlag, Berlin, 1996 | MR | Zbl

[5] A. A. Golovin, C. Sample, “Formation of porous metal oxides in the anodization process”, Physical Review E, 74 (2006), 041606 | DOI | MR

[6] A. A. Golovin, G. K. Singh, I. S. Aranson, “Formation of self-organized nanoscale porous structures in anodic aluminum oxide”, Physical Review B, 73 (2006), 205422 | DOI | MR

[7] L. Zhang, F. Y. Li, R. M. Metzger, Chem. Mater., 10 (1998), 2470 | DOI

[8] A. G. Limonov, A. B. Alshin, E. A. Alshina, “Dvukhstadiinye kompleksnye skhemy Rozenbroka dlya zhestkikh sistem”, ZhVMiMF, 49:2 (2009), 270–287 | MR | Zbl

[9] A. P. Li, F. Müller, A. Birner, K. Nielsh, U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina”, J. of Applied Physics, 84:11 (1998), 6023 | DOI