Modeling two-phase flow in microchannel by density functional method
Matematičeskoe modelirovanie, Tome 22 (2010) no. 8, pp. 83-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work capabilities of Density Functional Method in Hydrodynamics to model interfacial flows are tested via simulating two-phase flow in a square microchannel. A set of numerical experiments reproducing conditions of previous laboratory study was carried out and the results obtained were compared. Laboratory observations demonstrated that several flow regimes (threading, jetting and dripping) could take place depending on fluids' flow rates, surface tension and viscosity ratio. The regimes identified were located on a flow map in respect to capillary numbers for both liquids. In numerical experiments the same range of capillary numbers was covered and all the regimes were reconstructed. Flow map based on the numerical data was found to have similar structure to the experimental one. However, some divergence in regime's boundary positions was observed. Probable reasons for this divergence are discussed.
Keywords: numerical modeling, interfacial flows, microfluidics, density functional method.
@article{MM_2010_22_8_a6,
     author = {I. V. Kudinov and N. V. Evseev},
     title = {Modeling two-phase flow in microchannel by density functional method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {22},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_8_a6/}
}
TY  - JOUR
AU  - I. V. Kudinov
AU  - N. V. Evseev
TI  - Modeling two-phase flow in microchannel by density functional method
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 83
EP  - 96
VL  - 22
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_8_a6/
LA  - ru
ID  - MM_2010_22_8_a6
ER  - 
%0 Journal Article
%A I. V. Kudinov
%A N. V. Evseev
%T Modeling two-phase flow in microchannel by density functional method
%J Matematičeskoe modelirovanie
%D 2010
%P 83-96
%V 22
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_8_a6/
%G ru
%F MM_2010_22_8_a6
I. V. Kudinov; N. V. Evseev. Modeling two-phase flow in microchannel by density functional method. Matematičeskoe modelirovanie, Tome 22 (2010) no. 8, pp. 83-96. http://geodesic.mathdoc.fr/item/MM_2010_22_8_a6/

[1] Demyanov A. Yu., Dinariev O. Yu., Evseev N. V., Osnovy metoda funktsionala plotnosti v gidrodinamike, Fizmatlit, M., 2009, 312 pp.

[2] Osher S., Fedkiw R. P., “Level set methods: an overview and some recent results”, J. Comput. Phys., 169 (2001), 463–502 | DOI | MR | Zbl

[3] Sethian J. A., Smereka P., “Level set methods for fluid interfaces”, Annu. Rev. Fluid Mech., 35 (2003), 341–372 | DOI | MR | Zbl

[4] Van der Waals J. D., “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”, English translation, J. Statist. Phys., 20 (1979), 197–244 | DOI | MR

[5] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 5, Statisticheskaya fizika. Ch. 1, Nauka, M., 1976, 584 pp. | MR

[6] Cahn J. W., Hilliard J. E., “Free energy of a nonuniform system. I. Interfacial free energy”, J. Chem. Phys., 28:2 (1958), 258–267 | DOI

[7] Skripov V. P., Skripov A. V., “Spinodalnyi raspad”, UFN, 128:2 (1979), 193–231

[8] Jacqmin D., “Calculation of two-phase Navier-Stokes flows using phase-field modeling”, J. Comput. Phys., 155 (1999), 96–127 | DOI | MR | Zbl

[9] Lowengrub J., Truskinovsky L., “Quasi-incompressible Cahn-Hilliard fluids and topological transitions”, Proc. R. Soc. Lond. A, 454 (1998), 2617–2654 | DOI | MR | Zbl

[10] Anderson D. M., McFadden G. B., Wheeler A. A., “Diffuse-interface methods in fluid mechanics”, Annu. Rev. Fluid Mech., 30 (1998), 139–165 | DOI | MR

[11] Cubaud T., Mason T. G., “Capillary threads and viscous droplets in square microchannels”, Phys. Fluids, 20:5 (2008), 053302 | DOI | Zbl