Thermocapillary mechanism of the laser penetration welding
Matematičeskoe modelirovanie, Tome 22 (2010) no. 8, pp. 67-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The discrepancies between empirical data and the notions of the evaporative hypothesis, which assumes the melt displacement by vapor recoil pressure, are sufficient to cast doubt on the legitimacy of applying the evaporative hypothesis to the simulation of hydrodynamic processes in laser welding. To resolve these discrepancies, a hypothesis and theoretical model explaining keyhole formation as being due to tangential thermocapillary forces acting on a non-uniformly heated surface and the melt being removed from the beam impact zone is proposed. The keyhole phenomenon appears when the threshold beam intensity is exceeded and the thermocapillary divergent flow becomes structurally rearranged with the flow line rupture on the transition from a vortex flow to a shear flow. The thermocapillary model of keyhole formation is verified by comparing the calculated basic parameters of the process with empirical data.
Keywords: laser welding, deep penetration welding, keyhole formation, thermocapillary melt displacement.
@article{MM_2010_22_8_a5,
     author = {R. D. Seidgazov},
     title = {Thermocapillary mechanism of the laser penetration welding},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--82},
     publisher = {mathdoc},
     volume = {22},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_8_a5/}
}
TY  - JOUR
AU  - R. D. Seidgazov
TI  - Thermocapillary mechanism of the laser penetration welding
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 67
EP  - 82
VL  - 22
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_8_a5/
LA  - ru
ID  - MM_2010_22_8_a5
ER  - 
%0 Journal Article
%A R. D. Seidgazov
%T Thermocapillary mechanism of the laser penetration welding
%J Matematičeskoe modelirovanie
%D 2010
%P 67-82
%V 22
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_8_a5/
%G ru
%F MM_2010_22_8_a5
R. D. Seidgazov. Thermocapillary mechanism of the laser penetration welding. Matematičeskoe modelirovanie, Tome 22 (2010) no. 8, pp. 67-82. http://geodesic.mathdoc.fr/item/MM_2010_22_8_a5/

[1] Garaschuk V. P., Velichko O. A., Davydova V. B., “Vliyanie srednei osveschennosti v svetovom pyatne i fokusirovki na glubinu proplavleniya pri impulsnoi lazernoi svarke”, Avtomaticheskaya svarka, 1971, no. 5, 31

[2] Locke E. V., Hoag E. D., Hella R. A., IEEE J. Quantum Electron., 8:2 (1972), 132–135 | DOI

[3] Fabbro R., Hamadou M., Coste F., “Metallic vapor ejection on melt pool dynamics in deep penetration laser welding”, Journal of Laser Applications, 16:1 (2004), 16–19 | DOI

[4] Amara E. H., Fabbro R., Bendib A., “Modelling of the compressible vapor flow induced in a keyhole during laser welding”, Journal of Applied Physics, 93:7 (2003), 4289–4296 | DOI

[5] Rai R., Palmer T. A., Elmer J. W., DebRoy T. J., “Heat Transfer and fluid flow during electron beam welding of 304L stainless steel alloy”, Welding Journal, 88:3 (2009), 54–61

[6] Rai R., Burgardt P., Milevsky J. O., Lienert T. J., DebRoy T. J., “Heat transfer and fluid flow during electron beam welding of 21Cr-6Ni-9Mn steel and Ti-6Al-4V alloy”, J. Phys. D Appl. Phys., 42 (2009), 1–12 | DOI | Zbl

[7] Semak V. V., Bragg W. D., Damkroger B., Kempka S., “Transient model for the keyhole during laser welding”, J. Phys. D Appl. Phys., 32 (1999), L61–L64 | DOI

[8] Semak V. V., Knorovsky G. A., MacCallum D. O., Allen Roach R., “Effect of surface tension on melt pool dynamics during laser pulse interaction”, J. Phys. D Appl. Phys., 39 (2006), 590–595 | DOI

[9] Batanov V. A., Fedorov V. B., “Vymyvanie zhidkoi fazy – novyi mekhanizm formirovaniya kratera pri ploskom razvitom isparenii metallicheskoi misheni lazernym luchom”, Pisma v ZhETF, 17:7 (1973), 348–351 http://www.jetpletters.ac.ru/ps/1541/article_23562.shtml

[10] Andrews J. G., Atthey D. R., “Hydrodynamic limit to penetration of a material by a high-power beam”, J. Phys. D Appl. Phys., 9:15 (1976), 2181–2194 | DOI

[11] Klemens P. G. J., “Heat balance and flow conditions for electron beam and laser welding”, J. Appl. Phys., 47:5 (1976), 2165–2174 | DOI

[12] Verigin A. M., Erokhin A. A., Shavyrin V. N., Reznichenko V. F., “O velichine davleniya parogazovoi fazy v kanale proplavleniya pri ELS”, FKhOM, 1980, no. 2, 145–146

[13] Bondarev A. A., Voropai N. M., “O silakh, deistvuyuschikh na svarochnuyu vannu pri proplavlenii Al-splavov elektronnym luchom”, FKhOM, 1974, no. 2, 50–55

[14] Gatzweller W., Maischner D., Faber F. J., Derichs C., Beyer E., “Model of Dynamic Behaviour in Laser Beam Welding”, High Power Lasers and Laser Machining Technology, Proc. SPIE, 1132, 1989, 157–165

[15] Myamoto I., Maruo H., Arata Y., “The Role of Assist Gas in $CO_2$ Laser Welding”, ICALEO, 44 (1992), 68–74

[16] Grezev A. N., “Formirovanie parogazovogo kanala svarochnoi vanny pri lazernoi svarke”, Svarochnoe proizvodstvo, 2005, no. 6, 13–17

[17] Zaikin A. E., Levin A. V., Petrov A. L., “Dinamika plazmy pripoverkhnostnogo opticheskogo razryada v parakh metalla v luche nepreryvnogo $\mathrm{CO}_2$-lazera”, Kvantovaya elektronika, 25:2 (1995), 135–139

[18] Mitkevich E. A., Lopota V. A., Gornyi S. G., “Dinamika formirovaniya shva pri svarke $\mathrm{CO}_2$-lazerom”, Avtomaticheskaya svarka, 1982, no. 2, 22–26

[19] Eissen M., Keicher D. M., “Optical method of penetration sensing for pulsed Nd-YAG laser welding”, Proc. SPIE, 2993:2 (1997), 2–8 http://www.osti.gov/bridge/product.biblio.jsp?query_id=0&page=0&osti_id=463677 | DOI

[20] Vedenov A. A., Gladush G. G., Fizicheskie protsessy pri lazernoi obrabotke materialov, Energoatomizdat, M., 1985, 207 pp.

[21] Gornyi S. G., Lopota V. A., Smirnov V. S., “Uchet poter na isparenie pri opredelenii KPD lazernoi svarki”, Avtomaticheskaya svarka, 1988, no. 6, 72–73

[22] Gornyi S. G., Lopota V. A., Ploshikhin V. V., Smirnov V. S., Tsybulskii I. A., “Osobennosti ispareniya metalla pri lazernoi svarke”, Avtomaticheskaya svarka, 1986, no. 10, 64–65

[23] Khan P. A. A., Debroy T., David S. A., “Laser beam welding of high-manganese steel-examination of alloying elements loss and microstructural changes”, Welding Journal, 67:1 (1988), 1–7

[24] Gornyi S. G., Lopota V. A., Redozubov V. D., Rudoi I. G., Soroka A. M., Sukhov Yu. T., “O predelnykh kharakteristikakh lazernoi svarki metallov”, ZhTF, 57:12 (1987), 2390–2391

[25] Seidgazov R. D., Senatorov Yu. M., “Termokapillyarnyi mekhanizm glubokogo proplavleniya materialov lazernym izlucheniem”, Kvantovaya elektronika, 18:3 (1988), 396–398

[26] Seidgazov R. D., Nizev V. G., Gofman V. E., “O mekhanizme udaleniya rasplava impulsom TEA $\mathrm{CO}_2$-lazera”, Poverkhnost, 1992, no. 3, 18–21

[27] Seidgazov R. D., “Thermocapillary mechanism of melt displacement during keyhole formation by the laser beam”, J. Physics D Appl. Phys., 42:17 (2009), 175501, 7 pp. | DOI

[28] Ha E.-J., Kim Y.-D., Kim W., Unified analysis of low-power and high-power density laser welding processes with evolution of free surface, Annals of the Assembly for International Heat Transfer Conference 13, Australia, Sydney, 2006

[29] Wood B. C., Palmer T. A., Elmer J. W., Comparison Between Keyhole Weld Model and Laser Welding Experiments, Report of Lawrence Livermore National Laboratory, September 23, 2002

[30] Grigoryants A. G., Osnovy lazernoi obrabotki materialov, Mashinostroenie, M., 1989, 301 pp.

[31] Banishev A. F., Golubev V. S., Khramova O. D., “Study of the Key-Hole formation dynamics under high power laser action upon metals”, Laser Phys., 1:6 (1993), 1198–1202

[32] Banas C., “High power laser welding”, Optical Eng., 17:3 (1978), 210–216

[33] Pierce S. W., Burgardt P., Olson D. L., “Thermocapillary and Arc Phenomena in Stainless Steel Welding”, Welding Journal, 1999, Fabruary, 45–52 http://www.aws.org/wj/supplement/Pierce/ARTICLE3.pdf