$\delta$-process for acceleration of outer iterations in reactor problems
Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 148-160

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method "$\delta$-process" is proposed and justified for acceleration of outer iterations in reactor problems of the eigenvalue ($K_{eff}$) calculation in multigroup approximation. It is proved that $\delta$-process is asymptotically equivalent to the Newton’s method. To investigate the efficiency of this method the initial state of critical assembly BZD/1 in experiments “ZEBRA” is computed in approximation of the discrete ordinates method in X-Y-Z geometry with acceleration for the different value of parameter $\delta$ in the interval $(0,1)$. The best acceleration in 3 times is obtained in $S_8P_3$ approximation for the value $\delta=0.8$.
Keywords: acceleration method, criticality eigenvalue, discrete ordinates.
@article{MM_2010_22_7_a9,
     author = {E. P. Sychugova},
     title = {$\delta$-process for acceleration of outer iterations in reactor problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {148--160},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_7_a9/}
}
TY  - JOUR
AU  - E. P. Sychugova
TI  - $\delta$-process for acceleration of outer iterations in reactor problems
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 148
EP  - 160
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_7_a9/
LA  - ru
ID  - MM_2010_22_7_a9
ER  - 
%0 Journal Article
%A E. P. Sychugova
%T $\delta$-process for acceleration of outer iterations in reactor problems
%J Matematičeskoe modelirovanie
%D 2010
%P 148-160
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_7_a9/
%G ru
%F MM_2010_22_7_a9
E. P. Sychugova. $\delta$-process for acceleration of outer iterations in reactor problems. Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 148-160. http://geodesic.mathdoc.fr/item/MM_2010_22_7_a9/