$\delta$-process for acceleration of outer iterations in reactor problems
Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 148-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method "$\delta$-process" is proposed and justified for acceleration of outer iterations in reactor problems of the eigenvalue ($K_{eff}$) calculation in multigroup approximation. It is proved that $\delta$-process is asymptotically equivalent to the Newton’s method. To investigate the efficiency of this method the initial state of critical assembly BZD/1 in experiments “ZEBRA” is computed in approximation of the discrete ordinates method in X-Y-Z geometry with acceleration for the different value of parameter $\delta$ in the interval $(0,1)$. The best acceleration in 3 times is obtained in $S_8P_3$ approximation for the value $\delta=0.8$.
Keywords: acceleration method, criticality eigenvalue, discrete ordinates.
@article{MM_2010_22_7_a9,
     author = {E. P. Sychugova},
     title = {$\delta$-process for acceleration of outer iterations in reactor problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {148--160},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_7_a9/}
}
TY  - JOUR
AU  - E. P. Sychugova
TI  - $\delta$-process for acceleration of outer iterations in reactor problems
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 148
EP  - 160
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_7_a9/
LA  - ru
ID  - MM_2010_22_7_a9
ER  - 
%0 Journal Article
%A E. P. Sychugova
%T $\delta$-process for acceleration of outer iterations in reactor problems
%J Matematičeskoe modelirovanie
%D 2010
%P 148-160
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_7_a9/
%G ru
%F MM_2010_22_7_a9
E. P. Sychugova. $\delta$-process for acceleration of outer iterations in reactor problems. Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 148-160. http://geodesic.mathdoc.fr/item/MM_2010_22_7_a9/

[1] Grinspen Kh., Kelber K., Okrent D. (red.), Vychislitelnye metody v fizike reaktorov, Atomizdat, M., 1972, 372 pp.

[2] Adams M. L., Larsen E. W., “Fast iterative methods for discrete-ordinates particle transport calculations”, Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI

[3] Varga R. S., “Chislennye metody resheniya mnogomernykh mnogogruppovykh diffuzionnykh uravnenii”, Teoriya yadernykh reaktorov, Gosatomizdat, M., 1963, 187–214, 364 pp.

[4] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1971, 496 pp. | MR | Zbl

[5] Shishkov L. K., Metody resheniya diffuzionnykh uravnenii dvumernogo yadernogo reaktora, Atomizdat, M., 1976, 112 pp.

[6] Warsa J. S., Wareing T. A., Morel J. E., McGhee J. M., Lehoucq R. B., “Krylov subspace iterations for deterministic $k$-eigenvalue calculations”, Nucl. Sci. Eng., 147 (2004), 26–42

[7] Goldin V. Ya., Anistratov D. Yu., “Reaktor na bystrykh neitronakh v samoreguliruemom neitronno-yadernom rezhime”, Matematicheskoe modelirovanie, 7:10 (1995), 12–32 | Zbl

[8] Aristova E. N., Goldin V. Ya., “Ekonomichnyi raschet mnogogruppovogo uravneniya perenosa neitronov dlya perescheta usrednennykh po spektru sechenii”, Matematicheskoe modelirovanie, 20:11 (2008), 41–54 | Zbl

[9] Lyusternik L. A., “Zamechaniya k chislennomu resheniyu kraevykh zadach uravneniya Laplasa i vychisleniyu sobstvennykh znachenii metodom setok”, Trudy matematicheskogo instituta im. Steklova, 20, 1947, 49–64 | MR | Zbl

[10] Morozov V. N., “O reshenii kineticheskikh uravnenii s pomoschyu $S_n$-metoda”, Teoriya i metody rascheta yadernykh reaktorov, Gosatomizdat, M., 1962, 260 pp.

[11] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 456 pp. | MR

[12] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973, 632 pp. | MR | Zbl

[13] Sychugova E. P., Algoritmy resheniya uravneniya perenosa neitronov i gamma-kvantov v zadachakh matematicheskogo modelirovaniya yadernykh reaktorov i ikh zaschity, avtoreferat dissertatsii na zvanie kand. fiz.-mat. nauk, In. prikl. mat. im. M. V. Keldysha RAN, Moskva, 2009

[14] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR | Zbl

[15] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980, 496 pp. | MR | Zbl

[16] Knipe A. D., “Status of UKAEA Low Power Reactors”, Proc. Int. Top. Meeting on Safety, Status and Future of Non-Commercial Reactors and Irradiation Facilities in Boise (30 Sept. – 4 Oct. 1990, Idaho)

[17] Voronkov A., Arzhanov V., ““REACTOR” – program System for Neutron – Physical Calculation”, Proc. Int. Top. Meeting: Advances in Mathematics, Computations and Reactor Physics (28 April – 2 May 1991, Pittsburg, USA), v. 1

[18] Carlson B. G., “A Method of Characteristics and Other Improvements in Solution Methods for the Transport Equation”, Nucl. Sci. Eng., 61 (1976), 408–425

[19] Voronkov A., Gayfulin S., Zhuravlev V., “GNDL –program system of group constants for provide calculations of neutron and photon fields”, Proc. Int. Top. Meting: Advances in Mathematics, Computations and Reactor Physics (28 April – 2 May 1991, Pittsburg, USA), v. 5

[20] Voronkov A. V., Sychugova E. P., Matveeva E. V., Chebeskov A. N., Raschetnye issledovaniya natrievogo pustotnogo koeffitsienta reaktivnosti (NPER), izmerennogo v eksperimentakh “ZEBRA”, prepr. No 65, IPM im. M. V. Keldysha, Moskva, 1996, 24 pp.