On the power of second-order accurate numerical methods for model problems of gas- and hydrodynamics
Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 93-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides an overview on the use of high-resolution methods based on the CABARET scheme. Results are provided for several test problems including gas dynamics, computational aeroacoustics and geophysical fluid dynamics for a classical double-gyre quasigeostrophic model of ocean dynamics.
Keywords: advection/convection dominated flow problems, finite-difference methods, high-resolution schemes
Mots-clés : CABARET scheme.
@article{MM_2010_22_7_a6,
     author = {S. A. Karabasov},
     title = {On the power of second-order accurate numerical methods for model problems of gas- and hydrodynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--120},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_7_a6/}
}
TY  - JOUR
AU  - S. A. Karabasov
TI  - On the power of second-order accurate numerical methods for model problems of gas- and hydrodynamics
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 93
EP  - 120
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_7_a6/
LA  - ru
ID  - MM_2010_22_7_a6
ER  - 
%0 Journal Article
%A S. A. Karabasov
%T On the power of second-order accurate numerical methods for model problems of gas- and hydrodynamics
%J Matematičeskoe modelirovanie
%D 2010
%P 93-120
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_7_a6/
%G ru
%F MM_2010_22_7_a6
S. A. Karabasov. On the power of second-order accurate numerical methods for model problems of gas- and hydrodynamics. Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 93-120. http://geodesic.mathdoc.fr/item/MM_2010_22_7_a6/

[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[2] Hirsch C., Numerical Computation of Internal and External Flows. The Fundamentals of Computational Fluid Dynamics, 2nd Edition, John Wiley and Sons, Ltd, 2007

[3] Tolstykh A. I., “O metode chislennogo resheniya uravnenii Nave–Stoksa szhimaemogo gaza v shirokom diapazone chisel Reinoldsa”, Dokl. AN SSSR, 210:1 (1973), 48–51

[4] Lele S. K., “Compact finite-difference scheme with spectral-like resolution”, J. Comput. Physics, 103 (1992), 16–42 | DOI | MR | Zbl

[5] Tam C. K. W., Webb J. C., “Dispersion-relation-preserving finite difference schemes for computational acoustics”, J. Comput. Physics, 107 (1993), 262–281 | DOI | MR | Zbl

[6] Tikhonov A. N., Samarskii A. A., “O skhodimosti raznostnykh skhem v klasse razryvnykh koeffitsientov”, DAN SSSR, 99:1 (1954), 27–30 | Zbl

[7] Samarskii A. A., Popov Yu. P., Raznostnye skhemy gazovoi dinamiki, Nauka, M., 1975 | MR

[8] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechnoraznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch.zap. TsAGI, 3:6 (1972), 68–77

[9] Boris J. P., Book D. L., Hain K., “Flux-corrected transport: Generalization of the method”, J. Comput. Phys., 31 (1975), 335–350

[10] Zhmakin A. I., Fursenko A. A., “Ob odnoi raznostnoi skheme skvoznogo scheta”, ZhVM i MF, 20:4 (1980), 1021–1031 | MR

[11] Kopchenov V. I., Kraiko A. N., “Monotonnaya raznostnaya skhema vtorogo poryadka dlya giperbolicheskikh sistem s dvumya nezavisimymi peremennymi”, Zh. vychisl. mat. i mat. fiziki, 23:4 (1983), 848–859 | MR | Zbl

[12] Colella P., Woodward P. R., “The piecewise parabolic method (PPM) for gas-dynamical simulations”, J. Comput. Physics, 54 (1984), 174–201 | DOI | MR | Zbl

[13] Harten A., Engqist B., Osher S., Chakravarthy S., “Uniformly High Order Accurate Essentially Non-Oscillatiry Schemes III”, J. Comput. Phys., 71 (1987), 231–303 | DOI | MR | Zbl

[14] Vyaznikov K. V., Tishkin V. F., Favorskii A. P., “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenii giperbolicheskogo tipa”, Matematicheskoe modelirovanie, 1:5 (1989), 95–120 | MR | Zbl

[15] Cockburn B., Shu C. W., “Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems”, Journal of Scientific Computing, 16:3 (2001), 173–261 | DOI | MR | Zbl

[16] Liu X. D., Osher S., Chan T., “Weighted essentially non-oscillatory schemes”, J. Comp. Phys., 115 (1994), 200–212 | DOI | MR | Zbl

[17] Nikishin V. V., Popov I. V., Tishkin V. F., Favorskii A. P., “Raznostnye skhemy trekhmernoi gazovoi dinamiki dlya zadach o razvitii neustoichivosti Rikhtmaiera–Meshkova”, Matematicheskoe modelirovanie, 7:5 (1995), 15–25 | Zbl

[18] Iserles A., “Generalized Leapfrog Methods”, IMA J. of Numerical Analysis, 6:3 (1986), 381–392 | DOI | MR | Zbl

[19] Samarskii A. A., Goloviznin V. M., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100 | MR | Zbl

[20] Samarskii A. A., Goloviznin V. M., “Nekotorye svoistva raznostnoi skhemy ‘kabare’ ”, Matem. modelirovanie, 10:1 (1998), 101–116 | MR | Zbl

[21] Roe P. L., “Linear bicharacteristic schemes without dissipation”, SISC, 9 (1998), 1405–1427 | MR

[22] Tran Q. H., Scheurer B., “High-Order Monotonicity-Preserving Compact Schemes for Linear Scalar Advection on 2-D Irregular Meshes”, J. Comp. Phys., 175:2 (2002), 454–486 | DOI | MR | Zbl

[23] Goloviznin V. M., Karabasov S. A., Kobrinskii I. M., “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matem. modelirovanie, 15:9 (2003), 29–48 | MR | Zbl

[24] Goloviznin V. M., “Balansno-kharakteristicheskii metod chislennogo resheniya odnomernykh uravnenii gazovoi dinamiki v eilerovykh peremennykh”, Matem. modelirovanie, 18:11 (2006), 14–30 | MR | Zbl

[25] Karabasov S. A., Goloviznin V. M., “New Efficient High-Resolution Method for Nonlinear Problems in Aeroacoustics”, AIAA Journal, 45:12 (2007), 2861–2871 | DOI

[26] Goloviznin V. M., Semenov V. N., Korortkin I. A., Karabasov S. A., “A novel computational method for modelling stochastic advection in heterogeneous media. Transport in Porous Media”, Springer Netherlands, 66:3 (2007), 439–456 | MR

[27] Karabasov S. A., Berloff P. S., Goloviznin V. M., “CABARET in the Ocean Gyres”, J. Ocean Model., 30 (2009), 155–168 | DOI

[28] Colonius T., Lele S. K., “Computational aeroacoustics: progress on nonlinear problems of sound generation”, Progress in Aerospace sciences, 40 (2004), 345–416 | DOI

[29] Robert A. J., “The integration of a low-order spectral form of the primitive meteorological equations”, J. Met. Soc. Japan, 44:5 (1966), 237–245

[30] Asselin R., “Frequency filter for time integrations”, Mon. Wea. Rev., 100 (1972), 487–490 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[31] Godunov S. K., Zabrodin A. V. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 200 pp. | MR | Zbl

[32] Osher S., Chakravarthy S., “High resolution schemes and Entropy Condition”, SIAM J. Numer. Anal., 21:5 (1984), 955–984 | DOI | MR | Zbl

[33] Roe P. L., “Characteristic based schemes for the Euler equations”, Annual. Rev. Fluid. Mech., 18 (1986), 337–365 | DOI | MR | Zbl

[34] Toro E., Rieman solvers and numerical methods for fluid dynamics, Springer, Berlin–Heidelberg, 1997 | MR | Zbl

[35] Donat R., Marquina A., “Capturing Shock Reflections: An Improved Flux Formula”, Journal of Computational Physics, 25 (1996), 42–58 | DOI | MR

[36] Tang H., Liu T., “A note on the conservative schemes for the Euler equations”, Journal of Computational Physics, 218 (2006), 451–459 | DOI | Zbl

[37] Safronov A. V., “Sposob stabilizatsii setochno-kharakteristicheskikh skhem dlya uravnenii gazodinamiki”, Vych. Metody i Programmirovanie, 2007, no. 8, 6–9

[38] Elizarova T. G., Shilnikov E. V., “Vozmozhnosti kvazigazodinamicheskogo algoritma dlya chislennogo modelirovaniya techenii nevyazkogo gaza”, Zhurn. Vych. Matematiki i Mat. Fiziki, 49:3 (2009), 549–566 | MR

[39] Van Dyke M., Perturbation Methods in Fluid Mechanics, The Parabolic Press, 1975 | MR

[40] Karabasov S. A., Hynes T. P., “A Method for Solving Compressible Flow Equations in an Unsteady Free Steam”, Proc. IMechE 2006, 220, Part C: J. Mechanical Engineering Science, no. 2, 185–202

[41] Hixon R., Evaluation of a high-accuracy MacCormack-type scheme using benchmark problems, NASA Contractor Report 202324, ICOMP-97-03

[42] Colonius T., Lele S. K., Moin P., “The scattering of sound waves by a vortex: numerical simulations and analytical solutions”, J. Fluid Mech., 260 (1994), 271–298 | DOI

[43] Tabeling P., “Two-dimensional turbulence: a physicist approach”, Physics Report, 2002, no. 362, 1–62 | DOI | MR | Zbl

[44] Belyaev I. V., Kopiev V. F., On sound scattering by a Rankine vortex, AIAA paper 2007–3421

[45] Kinsler L. E., Frey A. R., Coppensand A. B., Sanders J. V., Fundamentals of acoustics, Wiley and Sons Inc., 2000

[46] Tucker P. G., Karabasov S. A., “Unstructured Grid Solution Approach for Eikonal Equation with Acoustics in Mind”, International Journal of Aeroacoustics, 8:6 (2009), 535–554 | DOI

[47] Georges T. M., “Acoustic ray paths through a model vortex with a viscous core, II”, J. Acoust. Soc. of America, 51:1 (1972), 206–209 | DOI

[48] McWilliams J. C., Fundamentals of Geophysical Fluid Dynamics, Cambridge University Press, 2006

[49] Holland W., “The role of mesoscale eddies in the general circulation of the ocean – Numerical experiments using a wind-driven quasigeostrophic model”, J. Phys. Oceanogr., 8 (1978), 363–392 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[50] Berloff P., Hogg A., Dewar W., “The turbulent oscillator: A mechanism of low-frequency variability of the wind-driven ocean gyres”, J. Phys. Oceanogr., 37 (2007), 2363–2386 | DOI | MR

[51] McWilliams J., “A note on a consistent quasigeostrophic model in a multiply connected domain”, Dyn. Atmos. Oceans, 1 (1977), 427–441 | DOI

[52] Arakawa A., “Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow, I”, J. Comput. Phys., 1 (1966), 119–143 | DOI | Zbl