An instability of radiative shock wave in the presence of magnetic field
Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 65-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical modelling of the matter deceleration in a magnetohydrodynamics radiative shock wave was performed. The problem is relevant to classical T Tauri stars. We consider the limit where the initial deceleration and heating of plasma (at the entrance to the cooling zone) occurs in a fast magnetohydrodynamic shock wave. To calculate the intensity of radiative losses we use “real” and “power-law” radiative functions. We determine the stability/instability of the radiative shock wave as a function of parameters of the incoming flow: velocity, strength of the magnetic field, and its inclination to the surface of the star. In a number of simulation runs with the “real” radiative function, we find a simple criterion for stability of the radiative shock wave for infalling matter velocity is $1.3\cdot10^7$ cm/sec.
Keywords: accretion, radiation, shock wave, magnetohydrodynamics.
@article{MM_2010_22_7_a4,
     author = {V. A. Gasilov and A. V. Koldoba and G. V. Ustyugova},
     title = {An instability of radiative shock wave in the presence of magnetic field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--81},
     publisher = {mathdoc},
     volume = {22},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_7_a4/}
}
TY  - JOUR
AU  - V. A. Gasilov
AU  - A. V. Koldoba
AU  - G. V. Ustyugova
TI  - An instability of radiative shock wave in the presence of magnetic field
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 65
EP  - 81
VL  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_7_a4/
LA  - ru
ID  - MM_2010_22_7_a4
ER  - 
%0 Journal Article
%A V. A. Gasilov
%A A. V. Koldoba
%A G. V. Ustyugova
%T An instability of radiative shock wave in the presence of magnetic field
%J Matematičeskoe modelirovanie
%D 2010
%P 65-81
%V 22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_7_a4/
%G ru
%F MM_2010_22_7_a4
V. A. Gasilov; A. V. Koldoba; G. V. Ustyugova. An instability of radiative shock wave in the presence of magnetic field. Matematičeskoe modelirovanie, Tome 22 (2010) no. 7, pp. 65-81. http://geodesic.mathdoc.fr/item/MM_2010_22_7_a4/

[1] Lamzin S. A., “Struktura udarnoi volny v sluchae akkretsii na molodye zvezdy maloi massy”, AZh, 75 (1998), 367–382

[2] Koldoba A. V., Ustyugova G. V., Romanova M. M., Lovelace R. V. E., “Oscillations of magnetohydrodynamic shock waves on the surfaces of T Tauri stars”, MNRAS, 388 (2008), 357–366 | DOI

[3] Surdin V. G., Lamzin S. A., Protozvezdy: gde, kak i kogda obrazuyutsya zvezdy, Nauka, M., 1992, 191 pp.

[4] Bessolaz N., Zanni C., Ferreira J., Keppens R., Bouvier J., “Accretion funnels onto weakly magnetized young stars”, A and A, 478 (2008), 155–162 | Zbl

[5] Romanova M. M., Ustyugova G. V., Koldoba A. V., Lovelace R. V. E., “Magnetohydrodynamic simulations of disk-magnetized star interactions in the quiescent regime: funnel flows and angular momentum transport”, ApJ, 578 (2002), 420–438 | DOI

[6] Bertschinger E., “On the structure and stability of radiative shock waves”, ApJ, 304 (1986), 154–177 | DOI

[7] Kuznetsov N. M., “Ustoichivost udarnykh voln”, UFN, 159:3 (1989), 493–527

[8] Dyakov S. P., “Ob ustoichivosti udarnykh voln”, ZhETF, 27 (1954), 288–295 | MR

[9] Chevalier R. A., “The stability of an accelerating shock wave in an exponential atmosphere”, ApJ, 359 (1990), 463–468 | DOI

[10] Erpenbeck J. J., “Stability of idealized one-reaction detonation”, Physics of Fluids, 7:5 (1964), 684–694 | DOI

[11] Langer S., Chanmugan G., Shaviv G., “Thermal instability in accretion flows onto degenerate stars”, ApJ, 245 (1981), 23–26 | DOI

[12] Chevalier R. A., Imamura J. N., “Linear analysis of an oscillatory instability of radiative shock waves”, ApJ, 261 (1982), 543–549 | DOI

[13] Ramachandran B., Smith M. D., “On the linear analysis of unstable radiative shocks”, MNRAS, 357 (2005), 707–721 | DOI

[14] Ramachandran B., Smith M. D., “The influence of the Mach number on the stability of radiative shocks”, MNRAS, 366 (2006), 586–608 | DOI

[15] Saxton C. J., “Effect of lower boundary conditions on the stability of radiative shocks”, Publ. Astron. Soc. Aust., 19 (2002), 282–292 | DOI

[16] Mignone A., “The dynamics of radiative shock waves: linear and nonlinear evolution”, ApJ, 626 (2005), 373–388 | DOI

[17] Smith M. D., “The stability of radiative shocks”, MNRAS, 238 (1989), 235–252

[18] Toth G., Draine B. T., “Oscillatory instability of radiative shocks with transverse magnetic field: linear analysis and nonlinear simulations”, ApJ, 413 (1993), 176–189 | DOI

[19] Ramachandran B., Smith M. D., “A stability analysis of radiative shocks in the presence of transverse magnetic field”, MNRAS, 362 (2005), 1353–1362 | DOI

[20] Rosner R., Tucker W. H., Vaiana G. S., “Dynamics of the quiescent solar corona”, ApJ, 220 (1978), 643–665 | DOI

[21] Raymond J. C., Smith B. W., “Soft $X$-ray spectrum of hot plasma”, ApJ SS, 35 (1977), 419–439 | DOI

[22] Peres G., Rosner R., Serio S., Vaiana G. S., “Coronal closed structures. IV. Hydrodynamical stability and response to heating perturbations”, ApJ, 252 (1982), 791–799 | DOI

[23] Gnat O., Sternberg A., “Time-dependent ionization in radiatively cooling gas”, ApJ SS, 168 (2007), 213–230 | DOI

[24] Smith M. D., “Compression in radiative shocks: switch and intermediate properties”, A and A, 272 (1993), 571

[25] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001, 608 pp. | MR