Method of splitting into physical interactions for the time-dynamics problem of the electron wave functions of 2D quantum ring
Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variant of the method of splitting into physical interactions is supposed for the time-dynamics problem of the electron wave functions of two-dimensional quantum ring. New numerically analytical algorithm based on the obtaining technique has been developed. Results of that method application are presented for the model-test. The comparison of efficiency is made for the numerically analytical method, numerical shooting method and double-sweep method.
Keywords: method of splitting into physical interactions, 2D quantum ring, low-dimensional quantum structures, nonstationary Schrodinger equation, alternating magnetic field.
@article{MM_2010_22_6_a1,
     author = {A. A. Bryzgalov and F. I. Karmanov},
     title = {Method of splitting into physical interactions for the time-dynamics problem of the electron wave functions of {2D} quantum ring},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {15--26},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_6_a1/}
}
TY  - JOUR
AU  - A. A. Bryzgalov
AU  - F. I. Karmanov
TI  - Method of splitting into physical interactions for the time-dynamics problem of the electron wave functions of 2D quantum ring
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 15
EP  - 26
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_6_a1/
LA  - ru
ID  - MM_2010_22_6_a1
ER  - 
%0 Journal Article
%A A. A. Bryzgalov
%A F. I. Karmanov
%T Method of splitting into physical interactions for the time-dynamics problem of the electron wave functions of 2D quantum ring
%J Matematičeskoe modelirovanie
%D 2010
%P 15-26
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_6_a1/
%G ru
%F MM_2010_22_6_a1
A. A. Bryzgalov; F. I. Karmanov. Method of splitting into physical interactions for the time-dynamics problem of the electron wave functions of 2D quantum ring. Matematičeskoe modelirovanie, Tome 22 (2010) no. 6, pp. 15-26. http://geodesic.mathdoc.fr/item/MM_2010_22_6_a1/

[1] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981 | MR | Zbl

[2] Fleck J. A., Morris J. R., Freit M. J., “Time-dependent propagation of high energy laser beams through atmosphere”, Applied Phys., 10:2 (1976), 129–160 | DOI

[3] Feit M. D., Fleck J. A., Steiger A., “Solution of the Schrödinger equation by a spectral method”, J. Comp. Phys., 47 (1982), 412 | DOI | MR | Zbl

[4] Karamzin Yu. N., Sukhorukov A. P., Trofimov V. A., Matematicheskoe modelirovanie v nelineinoi optike, Izd-vo MGU, M., 1989 | MR | Zbl

[5] Aidagulov G. R., Metod podvizhnoi setki dlya resheniya nestatsionarnogo uravneniya Shredingera, Vychislitelnye metody i programmirovanie, 5, 2004

[6] Aidagulov G. R., “Primenenie preobrazovaniya Fure-Gaussa k resheniyu zadachi Koshi dlya uravneniya Shredingera”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 42:12 (2002), 1810–1815 | MR | Zbl

[7] Dirak P. A. M., Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR

[8] Ternov I. M., Zhukovskii V. Ch., Borisov A. V., Kvantovaya mekhanika i makroskopicheskie effekty, Izd-vo MGU, M., 1993

[9] Tan W.-C., Inkson J. C., “Magnetization, persistent currents, and their relation in quantum rings and dots”, Phys. Rev. B, 60:8 (1999), 5626–5635 | DOI

[10] Imri I., Vvedenie v mezoskopicheskuyu fiziku, FIZMATLIT, M., 2002

[11] Timm R. et al., “Self-Organized Formation of GaSb/GaAs Quantum Rings”, Phys. Rev. Letters, 101:25 (2008), 256101 | DOI

[12] Takuma Okunishi et al., “Interstate interference of electron wave packet tunneling through a quantum ring”, Phys. Rev. B, 75:24 (2007), 245314 | DOI

[13] Tan W-C., Inkson J.C., “Electron states in a two-dimensional ring – an exactly soluble model”, Semicond. Sci. Technol., 11:11 (1996), 1635–1641 | DOI

[14] Kalitkin N. N., Chislennye metody, Nauka, M., 1980 | MR

[15] Porshnev C. V., Kompyuternoe modelirovanie fizicheskikh sistem s ispolzovaniem paketa MathCAD, Goryach. Liniya-Telekom, M., 2004

[16] Moyer Curt A., “Numerov extension of transparent boundary conditions for the Schrödinger equation in one dimension”, Am. J. Phys., 72:3, March (2004), 351–358 | DOI

[17] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika, Nauka, M., 1989 | MR | Zbl

[18] Avishai Y., Hatsugai Y., Kohomoto M., “Persistent currents and edge states in magnetic fields”, Phys. Rev. B, 47:15 (1993), 9501–9512 | DOI

[19] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[20] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Mir, M., 1983 | MR

[21] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971 | MR

[22] Varentsova S. A., Ponomareva E. V., Trofimov V. A., “O raschete sobstvennykh znachenii i sobstvennykh funktsii odnomernogo uravneniya Shredingera na adaptivnykh setkakh”, Vestnik MGU. Ser. 15. Vychisl. matem. i kibern., 2000, no. 3, 23–28 | MR | Zbl