The research of dynamics of occurrence, spreading, growth and closure of bubble cavities and a~supercavity in a~pipe with the decontaminated liquid at hydroblows
Matematičeskoe modelirovanie, Tome 22 (2010) no. 5, pp. 109-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

Additional substantiations of reliability of a method of calculation of unsteady currents of a liquid in the pipeline at variables on coordinates and time speeds of a sound developed by the author and published earlier in the magazine “Mathematical modeling” are presented. For characteristic of cross-section of the simple pipeline with the cavitationing decontaminated liquid (near the supply capacity ($x=0$), in the middle of a pipe ($x=0.5L$), near completely closed throttle ($x=L$), where $x$ is a longitudinal coordinate, $L$ is a length of a pipe) and for characteristic times ($t$) developments of processes of cavitation (at the maximum length of a zone of cavitation ($t_{km}$), at the maximum total volume of bubbles cavities ($t_W$) and at full closing of all cavitational cavities ($t_c$)) are presented the dependences of changes over $x$ and $t$ during two cycles of total volumes ($W_\Sigma$) of bubble cavities, supercavity volumes ($W_{\varphi^2}$), steam-content ($\alpha$), speeds of a sound ($a$), a true pressure ($P'$) and the mass expense ($G$) of a liquid or the steam-and-liquid mixes calculated according to the above method. The analysis of these dependences which opens dynamics of cavitational processes in a pipe with decontaminated cavitationing liquid at hydroblows is given.
@article{MM_2010_22_5_a10,
     author = {E. A. Karakulin},
     title = {The research of dynamics of occurrence, spreading, growth and closure of bubble cavities and a~supercavity in a~pipe with the decontaminated liquid at hydroblows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_5_a10/}
}
TY  - JOUR
AU  - E. A. Karakulin
TI  - The research of dynamics of occurrence, spreading, growth and closure of bubble cavities and a~supercavity in a~pipe with the decontaminated liquid at hydroblows
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 109
EP  - 121
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_5_a10/
LA  - ru
ID  - MM_2010_22_5_a10
ER  - 
%0 Journal Article
%A E. A. Karakulin
%T The research of dynamics of occurrence, spreading, growth and closure of bubble cavities and a~supercavity in a~pipe with the decontaminated liquid at hydroblows
%J Matematičeskoe modelirovanie
%D 2010
%P 109-121
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_5_a10/
%G ru
%F MM_2010_22_5_a10
E. A. Karakulin. The research of dynamics of occurrence, spreading, growth and closure of bubble cavities and a~supercavity in a~pipe with the decontaminated liquid at hydroblows. Matematičeskoe modelirovanie, Tome 22 (2010) no. 5, pp. 109-121. http://geodesic.mathdoc.fr/item/MM_2010_22_5_a10/

[1] Charnyi I. A., Neustanovivshiesya dvizheniya realnoi zhidkosti v trubakh, 2-e izd., pererab. i dop., Nedra, M., 1975, 296 pp.

[2] Lyamaev B. F., Nebelsin G. P., Nemotov V. A., Statsionarnye i perekhodnye protsessy v slozhnykh gidrosistemakh, Mashinostroenie, Leningrad. otd., L., 1978, 190 pp.

[3] Potter D. V., Vychislitelnye metody v fizike, Mir, M., 1975, 392 pp.

[4] Karakulin E. A., “Metod raschëta neustanovivshikhsya techenii zhidkosti v truboprovode pri peremennykh skorostyakh zvuka”, Matematicheskoe modelirovanie, 16:4 (2004), 67–79 | Zbl

[5] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Ucheb. dlya vuzov, 6-e izd., pererab. i dop., Nauka, Gl. red. fiz. mat. lit., M., 1987, 840 pp. | MR

[6] Mostkov M. A., Prikladnaya gidromekhanika, Gosenergoizdat, M.–L., 1963, 463 pp.

[7] Pilipenko V. V., Zadontsev V. A., Zhulai Yu. A., Grabovskaya T. A., Drozd V. A., Karakulin E. A., “Analiz zavisimostei naporov osevogo shnekovogo prednasosa i nasosa v tselom ot ob'ëma kavitatsionnoi polosti”, Kavitatsionnye avtokolebaniya v nasosnykh sistemakh, ch. 1, Naukova dumka, Kiev, 1976, 13–135

[8] Grabovskaya T. A., Zhulai Yu. A., “Ob odnom sposobe ustraneniya pogreshnosti v opredelenii ob'ëma kavitatsionnoi polosti v protochnoi chasti nasosa v rezhime kavitatsionnykh avtokolebanii”, Kavitatsionnye avtokolebaniya v nasosnykh sistemakh, ch. 1, Naukova dumka, Kiev, 1976, 118–123

[9] Karakulin E. A., “Vliyanie vduva vozdukha v pitayuschii truboprovod na kavitatsionnye avtokolebaniya v sisteme ‘shneko-tsentrobezhnyi nasos-truboprovody’ ”, Rabochie protsessy v shneko-tsentrobezhnykh nasosakh, Sb. nauch. tr., Naukova dumka, Kiev, 1978, 82–85

[10] Karakulin E. A., “Sravnenie zavisimostei shnekovogo prednasosa i shneko-tsentrobezhnogo nasosa v tselom ot ob'ëma kavitatsionnoi polosti dlya nasosov, suschestvenno razlichnykh po geometricheskim razmeram i osnovnym parametram”, Rabochie protsessy v shneko-tsentro-bezhnykh nasosakh, Sb. nauch. tr., Naukova dumka, Kiev, 1978, 70–73

[11] Karakulin E. A., “Modelirovanie avtomatiki truboprovodnykh sistem”, Matematicheskoe modelirovanie, 17:10 (2005), 87–103 | Zbl