Modeling of aerodynamics and pollution dispersion from traffic in urban sub-layer
Matematičeskoe modelirovanie, Tome 22 (2010) no. 4, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical microscale model of aerodynamics and pollution transport was developed. The model takes into account non-homogeneity of elements of the urban boundary layer. The numerical solution of the differential problem is based on the finite volume method. On the basis of experiments the comparison of three different turbulent closure schemes and parameterizations of the urban vegetation was conducted. Turbulent air dynamics and pollution transport were modeled around buildings array.
Mots-clés : air pollution
Keywords: microscale models of aerodynamics.
@article{MM_2010_22_4_a0,
     author = {R. B. Nuterman and A. A. Baklanov and A. V. Starchenko},
     title = {Modeling of aerodynamics and pollution dispersion from traffic in urban sub-layer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_4_a0/}
}
TY  - JOUR
AU  - R. B. Nuterman
AU  - A. A. Baklanov
AU  - A. V. Starchenko
TI  - Modeling of aerodynamics and pollution dispersion from traffic in urban sub-layer
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 3
EP  - 22
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_4_a0/
LA  - ru
ID  - MM_2010_22_4_a0
ER  - 
%0 Journal Article
%A R. B. Nuterman
%A A. A. Baklanov
%A A. V. Starchenko
%T Modeling of aerodynamics and pollution dispersion from traffic in urban sub-layer
%J Matematičeskoe modelirovanie
%D 2010
%P 3-22
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_4_a0/
%G ru
%F MM_2010_22_4_a0
R. B. Nuterman; A. A. Baklanov; A. V. Starchenko. Modeling of aerodynamics and pollution dispersion from traffic in urban sub-layer. Matematičeskoe modelirovanie, Tome 22 (2010) no. 4, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2010_22_4_a0/

[1] R. B. Nuterman, A. V. Starchenko, A. A. Baklanov, “Razrabotka i analiz mikromasshtabnoi meteorologicheskoi modeli dlya issledovaniya techenii vozdushnykh mass v gorodskoi zastroike”, Vychislitelnye tekhnologii, 13:3 (2008), 37–43

[2] P. Louka, M. Ketzel, P. Sahm, E. Guilloteau, N. Moussiopoulos, J.-F. Sini, P. G. Mestayer, R. Berkowiez, “CFD intercomparison exercise within TRAPOS European research network”, Proc. 7th In-ternational Conference on Environmental Science and Technology, Syros, Greece, 2001; Режим доступа: электронный ресурс http://www2.dmu.dk/atmosphericenvironment/Trapos/Downloads/7CEST-TRAPOS.pdf

[3] J. Ehrhard, R. Kunz, N. Moussiopoulos, “On the performance and applicability of nonlinear two-equation turbulence models for urban air quality modeling”, Environmental Monitoring and Assessment, 65 (2000), 201–209 | DOI

[4] G. G. Katul, L. Mahrt, D. Poggy, C. Sanz, “One- and two-equation models for canopy turbulence”, Boundary-Layer Meteorology, 113 (2004), 81–109 | DOI

[5] J. D. Wilson, R. H. Shaw, “A higher-order closure model for canopy flow”, J. of Applied Meteorology, 16 (1977), 1198–1205

[6] K. W. Ayotte, J. J. Finnigan, M. R. Raupach, “A second-order closure for neutrally stratified vegetative canopy flows”, Boundary-Layer Meteorology, 90 (1999), 189–216 | DOI

[7] J. Katolicky, M. Jicha, “Eulerian-Lagrangian model for traffic dynamics and its impact on operational ventilation of road tunnels”, J. of Wind Engineering and Industrial Aerodynamics, 93 (2005), 61–77 | DOI

[8] D. Bäumer, B. Vogel, F. Fiedler, “A new parameterisation of motorway-induced turbulence and its application in a numerical model”, Atmospheric Environment, 39:31 (2005), 5750–5759 | DOI

[9] E. Yee, C. A. Biltoft, “Concentration fluctuation measurements in a plume dispersing through a regular array of obstacles”, Boundary-Layer Meteorology, 111 (2004), 363–415 | DOI

[10] M. W. Rotach, R. Vogt, C. Bernhofer, E. Batchvarova, A. Christen, A. Clappier, B. Feddersen, S.-E. Gryning, G. Martucci, H. Mayer, V. Mitev, T. R. Oke, E. Parlow, H. Richner, M. Roth, Y.-A. Roulet, D. Ruffieux, J. A. Salmond, M. Schatzmann, J. A. Voogt, “BUBBLE an urban boundary layer meteorology project”, Theoretical and Applied Climatology, 81:3–4 (2005), 231–261 | DOI

[11] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza, ucheb. dlya vuzov, 7-e izd., ispr., Drofa, M., 2003, 840 pp. | MR

[12] B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flows”, Computational Methods in Applied Mechanics and Engineering, 3:2 (1974), 269–289 | DOI | Zbl

[13] T. J. Craft, B. E. Launder, K. Suga, “Development and application of a cubic eddy viscosity model of turbulence”, International Journal of Heat and Fluid Flow, 17 (1996), 108–115 | DOI

[14] B. E. Launder, “Second-moment closure and its use in modeling turbulent industrial flows”, International Journal for Numerical Methods in Fluids, 9 (1989), 963–985 | DOI | MR

[15] F. S. Lien, M. A. Leschziner, “Assessment of turbulent transport models including non-linear RNG eddy-viscosity formulation and second-moment closure”, Computers and Fluids, 23:8 (1994), 983–1004 | DOI | Zbl

[16] P. Louka, Contribution of Petroula Louka to the TRAPOS WG-TPT meeting in Cambridge, Rezhim dostupa: elektronnyi resurs, 2000 http://www2.dmu.dk/atmosphericenvironment/Trapos/texte/louka-camb.pdf

[17] C. C. Chieng, B. E. Launder, “On the calculation of turbulent heat transport downstream from an abrupt pipe expansion”, Numerical Heat Transfer, 3 (1980), 189–207 | DOI

[18] S. Patankar, Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, per. s angl., Energoatomizdat, M., 1984, 149 pp.

[19] A. A. Samarskii, P. N. Vabischevich, Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999, 247 pp.

[20] P. N. Vabischevich, Metod fiktivnykh oblastei v zadachakh matematicheskoi fiziki, Izd-vo MGU, M., 1991, 156 pp.

[21] B. Van Leer, “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme”, J. of Computational Physics, 14 (1974), 361–370 | DOI | Zbl

[22] V. P. Ilin, Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Fizmatlit, M., 1995, 288 pp. | MR

[23] A. S. Ginevskii (red.), Turbulentnye sdvigovye techeniya, v. 1, Mashinostroenie, M., 1982, 432 pp., per. s angl.

[24] A. Kimura, T. Iwata, A. Mochida, H. Yoshino, R. Ooka, S. Yoshida, “Optimization of plant canopy model for reproducing aerodynamic effects of trees. Part 1. Comparison between the canopy model optimized by the present authors and that proposed by Green”, Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan, 9, 2003, 721–722

[25] M. Ketzel, R. Berkowiez, A. Lohmeyer, “Comparison of numerical street dispersion models with results from wind tunnel and field measurements”, Environmental Monitoring and Assessment, 65 (2000), 363–370 | DOI

[26] J. Eichhorn, MISKAM-Handbuch zur Version 3.xx. Giese-Eichhorn, October, Wackernheim, Germany, 1998

[27] R. Berkowiez, “OSPM: A parameterised street pollution model”, Environmental monitoring and assessment, 65 (2000), 323–331 | DOI