Remarks on pressure computation at solving Navier--Stokes equations
Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 105-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for efficiency increase of algorithms for solving Navier–Stokes equations is offered. In addition to the Navier–Stokes equations, a subsidiary problem based on momentum equations, integral forms of the continuity equation (mass conservation equations) and pressure decomposition is used for reduction of the computational work. Solution of the subsidiary problem is close to the solution of the Navier–Stokes equations at smaller amounts of computations. The paper represents principles of the subsidiary problem formulation, description of the algorithm and results of solution of benchmark problems. The maximum reduction of computational efforts (as compared with traditional solvers) is obtained at simulation directed fluid flows.
@article{MM_2010_22_3_a7,
     author = {S. I. Martynenko},
     title = {Remarks on pressure computation at solving {Navier--Stokes} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--119},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_3_a7/}
}
TY  - JOUR
AU  - S. I. Martynenko
TI  - Remarks on pressure computation at solving Navier--Stokes equations
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 105
EP  - 119
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_3_a7/
LA  - ru
ID  - MM_2010_22_3_a7
ER  - 
%0 Journal Article
%A S. I. Martynenko
%T Remarks on pressure computation at solving Navier--Stokes equations
%J Matematičeskoe modelirovanie
%D 2010
%P 105-119
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_3_a7/
%G ru
%F MM_2010_22_3_a7
S. I. Martynenko. Remarks on pressure computation at solving Navier--Stokes equations. Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 105-119. http://geodesic.mathdoc.fr/item/MM_2010_22_3_a7/

[1] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[2] Martynenko S. I., “Sovershenstvovanie vychislitelnykh algoritmov dlya resheniya uravnenii Nave–Stoksa na strukturirovannykh setkakh”, Vestnik MGTU. Ser. Estestvennye nauki, 2008, no. 2, 78–94

[3] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Per. s angl., Energoatomizdat, M., 1984, 152 pp.

[4] Barton I. E., “The entrance effect of laminar flow over a backward-facing step geometry”, International Journal for Numerical Methods in Fluids, 25 (1997), 633–644 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Benzi M., Golub G. H., Liesen J., “Numerical solution of saddle point problems”, Acta Numerica, 14 (2005), 1–137 | DOI | MR | Zbl

[6] Briley W. R., “Numerical method for predicting three-dimensional steady viscous flow in ducts”, J. Comp. Phys., 14 (1974), 8–28 | DOI | Zbl

[7] Gartling D., “A test problem for outflow boundary conditions-flow over a backward-facing step”, International Journal for Numerical Methods in Fluids, 11 (1990), 953–967 | DOI

[8] Ghia U., Ghia K. N., Shin C. T., “High-Re Solutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method”, J. Comp. Physics, 48 (1982), 387–411 | DOI | Zbl

[9] Gresho P. M., Gartling D. K., Torczynski J. R., Cliffe K. A., Winters K. H., Garratt T. G., Spence A., Goodrich J. W., “Is a steady viscous incompressible two-dimensional flow over a backward-facing step at Re=800 stable?”, International Journal for Numerical Methods in Fluids, 17 (1993), 501–541 | DOI | MR | Zbl

[10] Keskar J., Lin D. A., “Computation of laminar backward-facing step flow at Re=800 with a spectral domain decomposition method”, International Journal for Numerical Methods in Fluids, 29 (1999), 411–427 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl