Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_3_a5, author = {Yu. M. Laevsky and P. E. Popov and A. A. Kalinkin}, title = {Simulation of two-phase fluid filtration by mixed finite element method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {74--90}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_3_a5/} }
TY - JOUR AU - Yu. M. Laevsky AU - P. E. Popov AU - A. A. Kalinkin TI - Simulation of two-phase fluid filtration by mixed finite element method JO - Matematičeskoe modelirovanie PY - 2010 SP - 74 EP - 90 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2010_22_3_a5/ LA - ru ID - MM_2010_22_3_a5 ER -
Yu. M. Laevsky; P. E. Popov; A. A. Kalinkin. Simulation of two-phase fluid filtration by mixed finite element method. Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 74-90. http://geodesic.mathdoc.fr/item/MM_2010_22_3_a5/
[1] G. I. Barenblatt, V. M. Entov, V. M. Ryzhik, Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984
[2] R. I. Nigmatulin, Dinamika mnogofaznykh sred, Chast II, Nauka, M., 1987
[3] A. N. Konovalov, Zadachi filtratsii mnogofaznoi neszhimaemoi zhidkosti, Nauka, Sib. otd-e, Novosibirsk, 1988 | MR | Zbl
[4] K. Aziz, A. Settari, Petrolium Reservoir Simulation, Blitzprint Ltd., Calgary, Alberta, 2002
[5] F. Brezi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR
[6] R. Ewing, “Mathematical modeling and simulation for fluid flow in porous media”, Matematicheskoe modelirovanie, 13:2 (2001), 117–127 | MR | Zbl
[7] Z. Chen, G. Huan, Yu. Ma, Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia, 2006 | MR
[8] G. V. Demidov, E. A. Novikov, “Ekonomichnyi algoritm integrirovaniya nezhestkikh sistem obyknovennykh differentsialnykh uravnenii”, Chislennye metody v matematicheskoi fizike, VTs SO AN SSSR, Novosibirsk, 1979, 69–83
[9] P. E. Popov, A. A. Kalinkin, “The method of separation of variables in a problem with a saddle point”, Russian J. Numer. Anal. Math. Model., 23:1 (2008), 97–106 | DOI | MR | Zbl
[10] Y. A. Kuznetsov, M. F. Wheeler, “Optimal order substructuring preconditioners for mixed finite element methods on nonmatching grids”, East-West J. Numer. Math., 3 (1995), 127–143 | MR | Zbl
[11] T. Rusten, R. Winter, “A preconditioned iterative method for saddle point problems”, SIAM J. Matrix Anal., 13 (1992), 887–904 | DOI | MR | Zbl
[12] A. Krechel, K. Stüben, SAMGp, User's manual, Fraunhofer Institute SCAI, 2005
[13] M. A. Kornilina, E. A. Samarskaya i dr., “Modelirovanie razrabotki neftyannykh mestorozhdenii na parallelnykh vychislitelnykh sistemakh”, Matemat. modelirov., 7:2 (1995), 35–48 | Zbl
[14] Yu. M. Laevskii, Kontsentriruyuschie operatory v metode konechnykh elementov, Chast I, Preprint No 907, VTs SO AN SSSR, Novosibirsk, 1990, 44 pp.
[15] V. V. Voevodin, Yu. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl
[16] L. V. Knaub, Yu. M. Laevskii, E. A. Novikov, “Algoritm integrirovaniya peremennogo poryadka i shaga na osnove yavnogo dvukhstadiinogo metoda Runge–Kutty”, Sib. zhurn. vychisl. matem., 10:2 (2007), 177–185