Stability of adiabatic compression of ideal gas by thin shell
Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 55-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

The complete solution of hydrodynamic problem of the centered isentropic compression wave in an ideal gas is constructed. The problem is formulated in Lagrange variables. The gas is assumed to be initially motionless with uniform density and pressure. The problem is solved in plane, cylindrical and spherical cases in the unified manner. In the second part stability problem of thin massive shell is considered. Equations that describe evolution of small perturbations of thin massive shell in the case when its acceleration depended on time are derived. The shell is assumed to be structureless; the mass of the shell is supposed to be much more than the mass of the gas surrounding the shell. This problem is solved in plane, cylindrical, and spherical geometry. Finally we examine the stability problem of the shell providing the isentropic compression of the gas. The stability is considered with respect to small perturbations in the form of angular harmonics and plane waves. Increments of amplitude growth are calculated for both types of perturbations. The study reveals that the growth of the plane wave type perturbations is limited and that the one of the angular harmonic type is unlimited.
@article{MM_2010_22_3_a4,
     author = {L. V. Ktitorov},
     title = {Stability of adiabatic compression of ideal gas by thin shell},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--73},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_3_a4/}
}
TY  - JOUR
AU  - L. V. Ktitorov
TI  - Stability of adiabatic compression of ideal gas by thin shell
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 55
EP  - 73
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_3_a4/
LA  - ru
ID  - MM_2010_22_3_a4
ER  - 
%0 Journal Article
%A L. V. Ktitorov
%T Stability of adiabatic compression of ideal gas by thin shell
%J Matematičeskoe modelirovanie
%D 2010
%P 55-73
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_3_a4/
%G ru
%F MM_2010_22_3_a4
L. V. Ktitorov. Stability of adiabatic compression of ideal gas by thin shell. Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 55-73. http://geodesic.mathdoc.fr/item/MM_2010_22_3_a4/

[1] Nuckols J., Wood L., Thiessen A., Zimmermann G., “Laser compression of matter to super-densities thermonuclear (CTR) applications”, Nature, 239:368 (1972), 139–142 | DOI

[2] Gao Yaoming, Chislennoe issledovanie realizatsii bezudarnogo szhatiya i termoyadernogo goreniya nesfericheskoi misheni tyazhelo-ionnogo termoyadernogo sinteza, Prepr. No 66, IPM im. M. V. Keldysha RAN, M., 2001

[3] B. Yu. Sharkov (red.), Yadernyi sintez s inertsionnym uderzhaniem, Fizmatlit, M., 2005, 53–56

[4] Lebo I. G., Tishkin V. F., Issledovanie gidrodinamicheskoi neustoichivosti v zadachakh lazernogo termoyadernogo sinteza, Fizmatlit, M., 2006, 23–31

[5] Gupta N. K., Lawande S. V., “Rayleigh–Taylor instability in multi-structured spherical targets”, Plasma Phys. Control. Fusion, 28:6 (1986), 925–941 | DOI

[6] Afanasev Yu. V., Basov N. G., Gamalii E. G., Krokhin O. N., Rozanov V. B., “Simmetriya i ustoichivost szhatiya lazernykh termoyadernykh mishenei”, Pisma v ZhETF, 12:3 (1976), 36

[7] Afanasev Yu. V., Gamalii E. G., Krokhin O. N., Rozanov V. B., “Uskorenie, szhatie i ustoichivost ploskogo sloya veschestva pod deistviem izlucheniya lazera”, PMM, 39 (1975), 451–457

[8] Stanyukovich K. P., Neustanovivshiesya dvizheniya sploshnoi sredy, Nauka, M., 1971 | MR

[9] Zhdanov S. K., Trubnikov B. A., “Optimalnoe szhatie v $\theta$- i $z$-pinche”, Pisma v ZhETF, 21:6 (1975), 371–374

[10] Zababakhin I. E., Simonenko V. A., “Sfericheskaya tsentrirovannaya volna szhatiya”, PMM, 42:3 (1978), 573–576 | Zbl

[11] Zmitrenko N. V., Kurdyumov S. P., Mikhailov A. P., Sovremennye problemy matematiki i mekhaniki, 28, VINITI, 1986

[12] Ott E., “Nonlinear Evolution of Rayleigh–Taylor Instability of a Thin Layer”, Phys. Rev. Lett., 29 (1972), 1429–1432 | DOI

[13] Manheimer W., Colombant D., Ott E., “Three-dimensional, nonlinear evolution of the Rayleigh–Taylor instability of a thin layer”, Phys. Fluids, 27:8 (1984), 2164–2175 | DOI | Zbl

[14] Landau L. D., Lifshits E. M., Kurs teoreticheskoi fiziki. Tom 6. Gidrodinamika, Nauka, M., 1986

[15] Taylor G., “The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes”, Proc. Roy. Soc. A, 201 (1950), 192–194 | DOI | MR