Well-localized bases construction algorithms
Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 45-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article considers Weyl–Heisenberg frame construction algorithm based on the Gabor basis matrix singular decomposition. Received basis has good time-frequency localization characteristics because its initializing function is close to the ideally localized Gaussian function. The sequence of orthogonality conditions allows to develop computationally efficient orthogonalization algorithm on the base of fast Furrier transform. Modeling results confirm the identity of initializing functions received in the result of these two algorithms and good basis localization. Thus the potential spectrum of implementations of well-localized based can be considerably broaden because of the utilization of fast algorithm, in particular in telecommunication devices based on the orthogonal frequency-time division multiplexing (OFTDM).
@article{MM_2010_22_3_a3,
     author = {D. A. Petrov},
     title = {Well-localized bases construction algorithms},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_3_a3/}
}
TY  - JOUR
AU  - D. A. Petrov
TI  - Well-localized bases construction algorithms
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 45
EP  - 54
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_3_a3/
LA  - ru
ID  - MM_2010_22_3_a3
ER  - 
%0 Journal Article
%A D. A. Petrov
%T Well-localized bases construction algorithms
%J Matematičeskoe modelirovanie
%D 2010
%P 45-54
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_3_a3/
%G ru
%F MM_2010_22_3_a3
D. A. Petrov. Well-localized bases construction algorithms. Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 45-54. http://geodesic.mathdoc.fr/item/MM_2010_22_3_a3/

[1] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001

[2] Feichtinger H. G., Strohmer T., Gabor analysis and algorithms: theory and applications, Birkhauser Boston, NY, 1998 | MR

[3] Volchkov V. P., “Signalnye bazisy s khoroshei chastotno-vremennoi lokalizatsiei”, Elektrosvyaz, 2007, no. 2, 21–25

[4] Zou W. Y., Wu Y., “COFDM: An overview”, IEEE Trans. Broadc, 41 (1995), 1–8 | DOI

[5] Tikhonov V. I., Statisticheskaya radiotekhnika, Radio i svyaz, M., 1982

[6] Volchkov V. P., Petrov D. A., “Optimizatsiya ortogonalnogo bazisa Veilya–Geizenberga dlya tsifrovykh sistem svyazi, ispolzuyuschikh printsip OFDM/OQAM peredachi”, Nauchnye vedomosti BelGU. Ser. Istoriya. Politologiya. Ekonomika. Informatika, 1(56):9/1 (2009), 104–115

[7] Petrov D. A., “Kriterii ortogonalnosti khorosho lokalizovannykh bazisov”, Vychislitelnye metody i programmirovanie, 10:1 (2009), 314–320

[8] Petukhov A. P., “Periodicheskie diskretnye vspleski”, Algebra i analiz, 8:3 (1996), 151–183 | MR | Zbl