On interpretation of the direct current electrical prospecting measurements
Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the current paper the algorithm of interpretation of the electrical prospecting data is constructed. The interpretation is based on the solution of the inverse problem for the scalar elliptic equation. As a result of the problem solution, the distribution of electrical conductivity in the medium is obtained under known measured direct current between two electrodes, one of them is in the borehole and another one is far away from the first one. The admissible class of functions, the solution belongs to, is the intersection of $L^\infty$ and the space of functions with bounded variation. Although in the considered piece-wise constant models all heterogeneuities are large-scale, the fine enough grids are necessary for setting up the models in order to trace the apriori unknown interfaces. Hence the dimension of the vector of the unknown electrical conductivity in the inverse problem may be several tens of thousands while the number of measurements are $10^3$. It means that residual minimization leads to ill-conditioned problem. In the current paper the inverse problem is formulated in terms of minimization of the multiplicative smoothing functional with regularizator similar to the norm in the space of the bounded variation functions. The results of the interpretation of the measured data, presented at the end of the paper, for two- and three-dimensional problems show the effectiveness of the constructed algorithm. The considered examples are related to quasi-realistic data.
@article{MM_2010_22_3_a0,
     author = {M. Yu. Zaslavskii},
     title = {On interpretation of the direct current electrical prospecting measurements},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_3_a0/}
}
TY  - JOUR
AU  - M. Yu. Zaslavskii
TI  - On interpretation of the direct current electrical prospecting measurements
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 3
EP  - 14
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_3_a0/
LA  - ru
ID  - MM_2010_22_3_a0
ER  - 
%0 Journal Article
%A M. Yu. Zaslavskii
%T On interpretation of the direct current electrical prospecting measurements
%J Matematičeskoe modelirovanie
%D 2010
%P 3-14
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_3_a0/
%G ru
%F MM_2010_22_3_a0
M. Yu. Zaslavskii. On interpretation of the direct current electrical prospecting measurements. Matematičeskoe modelirovanie, Tome 22 (2010) no. 3, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2010_22_3_a0/

[1] M. J. Wilt, D. L. Alumbaugh, H. F. Morrison, A. Becker, K. H. Lee, M. Deszcz-Pan, “Crosswell electromagnetic tomography: System design considerations and field results”, Geophysics, 60 (1995), 871–885 | DOI

[2] R. L. Newmark, A. L. Ramirez, W. D. Daily, “Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Tomography (ERT): Sensitivity Studies”, 1st National Conference on Carbon Sequestration (Washington, DC, May 14 – May 17, 2001)

[3] A. I. Nachman, “Global uniqueness for a two-dimensional inverse boundary value problem”, Ann. of Math., 142 (1996), 71–96 | DOI | MR

[4] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[5] A. N. Tikhonov, “O reshenii nekorrektno postavlennykh zadach”, DAN SSSR, 151:3 (1963), 501–504 | Zbl

[6] A. N. Tikhonov, “O regulyarizatsii nekorrektno postavlennykh zadach”, DAN SSSR, 153:1 (1963), 49–52 | Zbl

[7] P. M. van den Berg, A. L. van Broekhoven, A. Abubakar, “Extended contrast source inversion”, Inverse Problems, 15 (1999), 1325–1344 | DOI | MR | Zbl

[8] P. M. van den Berg, A. Abubakar, “Contrast source inversion method: state of art”, Progress in Electromagnetic Research, 34, 2001, 189–218

[9] D. Ingerman, V. Druskin, L. Knizhnerman, “Optimal finite-difference grids and rational approximations of square root. I. Elliptic problems”, Comm. Pure and Appl. Math., 53 (2000), 1039–1066 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] Yu. P. Krasovskii, “Svoistva funktsii Grina i obobschennye resheniya ellipticheskikh granichnykh zadach”, Izv. AN SSSR. Ser. matem., 33:1 (1969), 109–137 | MR | Zbl

[11] P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve”, SIAM Review, 34 (1992), 561–580 | DOI | MR | Zbl

[12] A. Abubakar, P. M. van den Berg, “A multiplicative weighted $L^2$-norm total variation regularization for deblurring algorithms”, Proceedings of Acoustics, Speech, and Signal Processing, 4 (2002), 3545–3548

[13] L. Rudin, Images, numerical analysis of singularities and shock filters, C.S. Dept. Report $\#$TR: 5250:87, Caltech, 1987