About one variant of multidimensional extension of the ``cabaret'' scheme
Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 69-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve advection equation in divergent form the new variant of conservative multidimensional extension of “cabaret” (upwind leapfrog) scheme is proposed. In two dimensions on the rectangular grid two and three layered variants of the scheme are derived. The stability properties as well as spectral characteristics of the scheme are analyzed. The results of numerical tests show robustness of the proposed scheme and also improvement in accuracy over leapfrog scheme. Comparison with known multidimensional extension of the “cabaret” scheme and further possibilities to improve this scheme are discussed.
@article{MM_2010_22_2_a4,
     author = {S. V. Kostrykin},
     title = {About one variant of multidimensional extension of the ``cabaret'' scheme},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {69--82},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_2_a4/}
}
TY  - JOUR
AU  - S. V. Kostrykin
TI  - About one variant of multidimensional extension of the ``cabaret'' scheme
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 69
EP  - 82
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_2_a4/
LA  - ru
ID  - MM_2010_22_2_a4
ER  - 
%0 Journal Article
%A S. V. Kostrykin
%T About one variant of multidimensional extension of the ``cabaret'' scheme
%J Matematičeskoe modelirovanie
%D 2010
%P 69-82
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_2_a4/
%G ru
%F MM_2010_22_2_a4
S. V. Kostrykin. About one variant of multidimensional extension of the ``cabaret'' scheme. Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 69-82. http://geodesic.mathdoc.fr/item/MM_2010_22_2_a4/

[1] Boris J. P., Book D. L., Hain K., “Flux–corrected transport: Generalization of the method”, J. Comput. Phys., 31 (1975), 335–350

[2] Iserles A., “Generalized leapfrog methods”, IMA Journal of Numerical Analysis, 6:4 (1986), 381–392 | DOI | MR | Zbl

[3] Thomas J. P., Roe P. L., Development of non-dissipative numerical schemes for computational aeroacoustics, AIAA 11th Computational Fluid Dynamics Conference, 1993, AIAA paper 93–3382

[4] Goloviznin V. M., Samarskii A. A., “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matematicheskoe modelirovanie, 10:1 (1998), 86–100 | MR

[5] Goloviznin V. M., Samarskii A. A., “Nelineinaya korrektsiya skhemy kabare”, Matematicheskoe modelirovanie, 10:12 (1998), 107–123

[6] Kim C., “Accurate multi-level schemes for advection”, Int. J. Numer. Meth. Fluids, 41 (2003), 471–494 | DOI | MR | Zbl

[7] Tran Q. H., Scheurer B., “High-order monotonicity-preserving compact schemes for linear scalar advection on 2-D irregular meshes”, J. Comput. Phys., 175 (2002), 454–486 | DOI | MR | Zbl

[8] Karabasov S. A., Goloviznin V. M., “A new efficient high-resolution method for non-linear problems in aeroacoustics”, AIAA Journal, 45:12 (2007), 2861–2871 | DOI

[9] Goloviznin V. M., Semenov V. N., Korotkin I. A., Karabasov S. A., “A novel computational method for modelling stochastic advection in heterogeneous media”, Transport in Porous Media, 66:3 (2007), 439–456 | DOI | MR

[10] Goloviznin V. M., Karabasov C. A., Kobrinskii I. M., “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matematicheskoe modelirovanie, 15:9 (2003), 29–48 | MR | Zbl

[11] Kostrykin S. V., “Vybor optimalnoi skhemy perenosa dlya modeli vetrovogo volneniya WAM-4”, Vychislitelnye tekhnologii, 13:spetsialnyi vypusk 3 (2008), 80–90

[12] Thuburn J., “Multidimensional flux-limited advection schemes”, J. Comput. Phys., 123 (1996), 74–83 | DOI | Zbl