HEFEST-M: the code for large scale computation of high temperature deforming
Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 45-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of the paper is to advance the HEFEST-M program module assigned to perform stressing calculation at NPP structures. It is a part of SOCRAT code which is being developed at Russia for nuclear safety analysis. HEFEST-M possibilities include nonlinear deforming, elastic-plastic and creep material models, contact interaction of deforming domains, high temperature creep calculations and other. The creep model was tested on experiments with domestic reactor steel. Mathematical models of the HEFEST-M and FEM discretization are presented in the paper. Some test results of calculations are discussed.
@article{MM_2010_22_2_a2,
     author = {N. I. Drobyshevsky and A. E. Kisselev and V. F. Strizhov and A. S. Filippov},
     title = {HEFEST-M: the code for large scale computation of high temperature deforming},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {45--63},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_2_a2/}
}
TY  - JOUR
AU  - N. I. Drobyshevsky
AU  - A. E. Kisselev
AU  - V. F. Strizhov
AU  - A. S. Filippov
TI  - HEFEST-M: the code for large scale computation of high temperature deforming
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 45
EP  - 63
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_2_a2/
LA  - ru
ID  - MM_2010_22_2_a2
ER  - 
%0 Journal Article
%A N. I. Drobyshevsky
%A A. E. Kisselev
%A V. F. Strizhov
%A A. S. Filippov
%T HEFEST-M: the code for large scale computation of high temperature deforming
%J Matematičeskoe modelirovanie
%D 2010
%P 45-63
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_2_a2/
%G ru
%F MM_2010_22_2_a2
N. I. Drobyshevsky; A. E. Kisselev; V. F. Strizhov; A. S. Filippov. HEFEST-M: the code for large scale computation of high temperature deforming. Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 45-63. http://geodesic.mathdoc.fr/item/MM_2010_22_2_a2/

[1] Kiselëv A. E., Nosatov V. N., Strizhov V. F., Tomaschik D. Yu., “Primenenie integralnogo koda dlya modelirovaniya avariinykh rezhimov reaktora VVER-1000”, Izvestiya RAN. Energetika, 2004, no. 2, 57–64

[2] Ignatev A. I., Kiselëv A. E., Semenov V. N., Strizhov V. F., Filippov A. S., GEFEST: chislennoe modelirovanie protsessov v nizhnei chasti reaktora VVER pri tyazhëloi avarii, preprint No IBRAE–2003–13 M, IBRAE, M., 2003, 31 pp.

[3] Ilyushin A. A., Mekhanika sploshnoi sredy, Izd-vo MGU, M., 1990, 310 pp.

[4] Hughes T. J. R., The Finite Element Method, New Jersey, 1987, 803 pp. | MR

[5] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975

[6] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984, 333 pp. | MR

[7] Drobyshevskii N. I., “Modifitsirovannyi chetyrekhugolnyi konechnyi element dlya resheniya dvumernykh zadach nelineinogo deformirovaniya konstruktsii”, Izvestiya RAN. MTT, 1996, no. 2, 152–162

[8] Liu W. K., Ong J. S.-J., Uras R. A., “Finite element stabilization matrices – a unifucation approach”, Comput. Methods Appl. Mech. Engng., 53:1 (1985), 13–46 | DOI | MR | Zbl

[9] Belytschko T., Bindeman L. P., “Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems”, Comput. Methods Appl. Mech. Engng., 88:3 (1991), 311–340 | DOI | MR | Zbl

[10] Hallquist J. O., Goudreau G. L., Benson D. J., “Sliding interfaces with contact-impact in large-scale Lagrangian computations”, Comp. Methods Appl. Mech. Engng., 33 (1985), 107–137 | DOI | MR

[11] Dennis Dzh. (ml.), Shnabel R., Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh sistem uravnenii, Mir, M., 1987, 440 pp. | MR

[12] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985, 509 pp. | MR

[13] Krieg R. D., Key S. W., “Implementation of a time independent plasticity theory into structural computer programs”, Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, AMD-20, eds. Stricklin J. A., Saczalski K. J., ASME, New York, 1976, 125–137

[14] Khill R., Matematicheskaya teoriya plastichnosti, GITL, M., 1956

[15] Prager V., Vvedenie v mekhaniku sploshnykh sred, IL, M., 1963

[16] Korobeinikov S. N., Nelineinoe deformirovanie tverdykh tel, SO RAN, Novosibirsk, 2000

[17] Hughes T. J. R., “Numerical implementations of constitutive models: rate-independent deviatoric plastisity”, Theoretical foundations for large-scale computations of nonlinear material behaviour, eds. S. Nemat-Nasser et al., Netherlands, 1984

[18] Karlsson L., “Thermal stresses in welding”, Thermal Stresses, Vol. 1, ed. R. Hetnarski, Amsterdam, 1986, 299–389

[19] Rabotnov Yu. N., Polzuchest elementov konstruktsii, GIFML, M., 1966

[20] Krieg R. D., “Implementation of creep equation for a metal into a finite element computer program”, Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, AMD-20, eds. Stricklin J. A., Saczalski K. J., ASME, New York, 1976, 138–144

[21] Taira S., Otani R., Teoriya vysokotemperaturnoi prochnosti materialov, M., 1986 | Zbl

[22] Rempre J. L., Chavez S. A., Thinnes G. L. et al., Light Water Reactor Lower Head Failure Analysis, NUREG/CR–5642, EGG–2618, 1993

[23] Chu T. et al., “Experiments and modeling of Creep Behavior of Reactor Pressure Vessel Lower Head Failure”, Proc. of OECD Workshop on In Vessel Debris Retention and Coolability, March, 1998

[24] Drobyshevskii N. I., Filippov A. S., “Chislennyi analiz vysokotemperaturnoi polzuchesti reaktornoi stali”, Materialy VI Mezhdunarodnogo simpoziuma “Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred” (Yaropolets 14–18 fevralya 2000)

[25] Likhachev Yu. I., Ershov E. A., Korolev V. N., Troyanov V. M., “Raschetno-eksperimentalnye issledovaniya termomekhanicheskikh protsessov korpusa reaktora”, Problema uderzhaniya rasplava aktivnoi zony v korpuse reaktora, Obninsk, 1994, 118–177

[26] Loktionov V. D., Sosnin O. V., Lyubashevskaya I. V., “Prochnostnye svoistva i osobennosti deformirovaniya povedeniya stali 15Kh2NMFA-A v temperaturnom diapazone 20–1100$^\circ\mathrm C$”, Atomnaya energiya, 99:3 (2005), 229–232

[27] Opredelenie kratkovremennykh mekhanicheskikh svoistv i parametrov polzuchesti splava 15Kh2NMFA pri temperaturakh 20–1080$^\circ\mathrm C$, Otchet MEI (TU), gos. reg. 01040000433, inv. 02200404735, M., 2003, 60 pp.

[28] Normy rascheta na prochnost oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok, PNAE G-7-002-86

[29] Boli B., Ueiner Dzh., Teoriya temperaturnykh napryazhenii, Mir, M., 1964