Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_2_a2, author = {N. I. Drobyshevsky and A. E. Kisselev and V. F. Strizhov and A. S. Filippov}, title = {HEFEST-M: the code for large scale computation of high temperature deforming}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {45--63}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_2_a2/} }
TY - JOUR AU - N. I. Drobyshevsky AU - A. E. Kisselev AU - V. F. Strizhov AU - A. S. Filippov TI - HEFEST-M: the code for large scale computation of high temperature deforming JO - Matematičeskoe modelirovanie PY - 2010 SP - 45 EP - 63 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2010_22_2_a2/ LA - ru ID - MM_2010_22_2_a2 ER -
%0 Journal Article %A N. I. Drobyshevsky %A A. E. Kisselev %A V. F. Strizhov %A A. S. Filippov %T HEFEST-M: the code for large scale computation of high temperature deforming %J Matematičeskoe modelirovanie %D 2010 %P 45-63 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2010_22_2_a2/ %G ru %F MM_2010_22_2_a2
N. I. Drobyshevsky; A. E. Kisselev; V. F. Strizhov; A. S. Filippov. HEFEST-M: the code for large scale computation of high temperature deforming. Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 45-63. http://geodesic.mathdoc.fr/item/MM_2010_22_2_a2/
[1] Kiselëv A. E., Nosatov V. N., Strizhov V. F., Tomaschik D. Yu., “Primenenie integralnogo koda dlya modelirovaniya avariinykh rezhimov reaktora VVER-1000”, Izvestiya RAN. Energetika, 2004, no. 2, 57–64
[2] Ignatev A. I., Kiselëv A. E., Semenov V. N., Strizhov V. F., Filippov A. S., GEFEST: chislennoe modelirovanie protsessov v nizhnei chasti reaktora VVER pri tyazhëloi avarii, preprint No IBRAE–2003–13 M, IBRAE, M., 2003, 31 pp.
[3] Ilyushin A. A., Mekhanika sploshnoi sredy, Izd-vo MGU, M., 1990, 310 pp.
[4] Hughes T. J. R., The Finite Element Method, New Jersey, 1987, 803 pp. | MR
[5] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975
[6] Dzhordzh A., Lyu Dzh., Chislennoe reshenie bolshikh razrezhennykh sistem uravnenii, Mir, M., 1984, 333 pp. | MR
[7] Drobyshevskii N. I., “Modifitsirovannyi chetyrekhugolnyi konechnyi element dlya resheniya dvumernykh zadach nelineinogo deformirovaniya konstruktsii”, Izvestiya RAN. MTT, 1996, no. 2, 152–162
[8] Liu W. K., Ong J. S.-J., Uras R. A., “Finite element stabilization matrices – a unifucation approach”, Comput. Methods Appl. Mech. Engng., 53:1 (1985), 13–46 | DOI | MR | Zbl
[9] Belytschko T., Bindeman L. P., “Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems”, Comput. Methods Appl. Mech. Engng., 88:3 (1991), 311–340 | DOI | MR | Zbl
[10] Hallquist J. O., Goudreau G. L., Benson D. J., “Sliding interfaces with contact-impact in large-scale Lagrangian computations”, Comp. Methods Appl. Mech. Engng., 33 (1985), 107–137 | DOI | MR
[11] Dennis Dzh. (ml.), Shnabel R., Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh sistem uravnenii, Mir, M., 1987, 440 pp. | MR
[12] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985, 509 pp. | MR
[13] Krieg R. D., Key S. W., “Implementation of a time independent plasticity theory into structural computer programs”, Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, AMD-20, eds. Stricklin J. A., Saczalski K. J., ASME, New York, 1976, 125–137
[14] Khill R., Matematicheskaya teoriya plastichnosti, GITL, M., 1956
[15] Prager V., Vvedenie v mekhaniku sploshnykh sred, IL, M., 1963
[16] Korobeinikov S. N., Nelineinoe deformirovanie tverdykh tel, SO RAN, Novosibirsk, 2000
[17] Hughes T. J. R., “Numerical implementations of constitutive models: rate-independent deviatoric plastisity”, Theoretical foundations for large-scale computations of nonlinear material behaviour, eds. S. Nemat-Nasser et al., Netherlands, 1984
[18] Karlsson L., “Thermal stresses in welding”, Thermal Stresses, Vol. 1, ed. R. Hetnarski, Amsterdam, 1986, 299–389
[19] Rabotnov Yu. N., Polzuchest elementov konstruktsii, GIFML, M., 1966
[20] Krieg R. D., “Implementation of creep equation for a metal into a finite element computer program”, Constitutive Equations in Viscoplasticity: Computational and Engineering Aspects, AMD-20, eds. Stricklin J. A., Saczalski K. J., ASME, New York, 1976, 138–144
[21] Taira S., Otani R., Teoriya vysokotemperaturnoi prochnosti materialov, M., 1986 | Zbl
[22] Rempre J. L., Chavez S. A., Thinnes G. L. et al., Light Water Reactor Lower Head Failure Analysis, NUREG/CR–5642, EGG–2618, 1993
[23] Chu T. et al., “Experiments and modeling of Creep Behavior of Reactor Pressure Vessel Lower Head Failure”, Proc. of OECD Workshop on In Vessel Debris Retention and Coolability, March, 1998
[24] Drobyshevskii N. I., Filippov A. S., “Chislennyi analiz vysokotemperaturnoi polzuchesti reaktornoi stali”, Materialy VI Mezhdunarodnogo simpoziuma “Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred” (Yaropolets 14–18 fevralya 2000)
[25] Likhachev Yu. I., Ershov E. A., Korolev V. N., Troyanov V. M., “Raschetno-eksperimentalnye issledovaniya termomekhanicheskikh protsessov korpusa reaktora”, Problema uderzhaniya rasplava aktivnoi zony v korpuse reaktora, Obninsk, 1994, 118–177
[26] Loktionov V. D., Sosnin O. V., Lyubashevskaya I. V., “Prochnostnye svoistva i osobennosti deformirovaniya povedeniya stali 15Kh2NMFA-A v temperaturnom diapazone 20–1100$^\circ\mathrm C$”, Atomnaya energiya, 99:3 (2005), 229–232
[27] Opredelenie kratkovremennykh mekhanicheskikh svoistv i parametrov polzuchesti splava 15Kh2NMFA pri temperaturakh 20–1080$^\circ\mathrm C$, Otchet MEI (TU), gos. reg. 01040000433, inv. 02200404735, M., 2003, 60 pp.
[28] Normy rascheta na prochnost oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok, PNAE G-7-002-86
[29] Boli B., Ueiner Dzh., Teoriya temperaturnykh napryazhenii, Mir, M., 1964