Waves and spatially localized structures in turbulent viscous fluid flows. Numerical results
Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 3-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Direct Navier–Stokes simulation of fully turbulent and intermittent viscous incompressible fluid flows in an infinite circular pipe is performed. Calculations were carried out at Reynolds numbers $1800\le\mathrm{Re}\le4000$, based on the mean velocity and pipe diameter $D=2R$. Numerical Navier–Stokes solutions obtained belong to the class of streamwise periodic solutions with large periods $\lambda_\mathrm{max}=16\pi R$. It is demonstrated that the most energetic Fourier components of velocity fluctuations correspond to very low nonzero longitudinal wavenumbers. The structure of turbulent and inter-mittent flows as well as associated wave-like motions are investigated. The possibility and accu-racy of the velocity field approximation by the superposition of travelling and standing waves is analysed. It is shown that the parameters of such representation (wave amplitudes, phase veloci-ties, the position of wave front) are strongly dependent on the inclusion of low longitudinal wavenumbers in the Navier–Stokes simulation. Numerical solutions at $\mathrm{Re}=2200,2350$ describe equilibrium self-sustained flow regimes in which turbulent structures (turbulent puffs) sur-rounded by almost laminar flow propagate downstream while preserving their length. Space-time structure of turbulent puffs is compared with the existing experimental data. Propagation velocity of turbulent puffs and turbulence statistics inside and outside the puff are calculated.
@article{MM_2010_22_2_a0,
     author = {V. G. Priymak},
     title = {Waves and spatially localized structures in turbulent viscous fluid flows. {Numerical} results},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--28},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_2_a0/}
}
TY  - JOUR
AU  - V. G. Priymak
TI  - Waves and spatially localized structures in turbulent viscous fluid flows. Numerical results
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 3
EP  - 28
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_2_a0/
LA  - ru
ID  - MM_2010_22_2_a0
ER  - 
%0 Journal Article
%A V. G. Priymak
%T Waves and spatially localized structures in turbulent viscous fluid flows. Numerical results
%J Matematičeskoe modelirovanie
%D 2010
%P 3-28
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_2_a0/
%G ru
%F MM_2010_22_2_a0
V. G. Priymak. Waves and spatially localized structures in turbulent viscous fluid flows. Numerical results. Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 3-28. http://geodesic.mathdoc.fr/item/MM_2010_22_2_a0/

[1] Priimak V. G., “Rezultaty i vozmozhnosti pryamogo chislennogo modelirovaniya turbulentnykh techenii vyazkoi zhidkosti v krugloi trube”, DAN SSSR, 316:1 (1991), 71–76 | MR

[2] Eggels J. G. M., Unger F., Weiss M. H., Westerweel J., Adrian R. J., Friedrich R., Nieuwstadt F. T. M., “Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment”, J. Fluid Mech., 268 (1994), 175–209 | DOI

[3] Nikitin N. V., “Pryamoe chislennoe modelirovanie trekhmernykh turbulentnykh techenii v trubakh krugovogo secheniya”, Izv. RAN MZhG, 1994, no. 6, 14–26 | MR

[4] Priimak V. G., “Opisanie peremezhaemosti turbulentnykh techenii resheniyami uravnenii Nave–Stoksa”, DAN, 377:5 (2001), 634–637

[5] Priymak V. G., Miyazaki T., “Accurate Navier–Stokes investigation of transitional and turbulent flows in a circular pipe”, J. Comput. Phys., 142 (1998), 370–411 | DOI | MR | Zbl

[6] Kantuell B. Dzh., “Organizovannye dvizheniya v turbulentnykh potokakh.”, Vikhri i volny, Sb. statei, Mir, 1984, 9–79

[7] Kim J., Moin P., Moser R., “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech., 177 (1987), 133–166 | DOI | Zbl

[8] Jimenez J., Moin P., “The minimal flow unit in near-wall turbulence”, J. Fluid Mech., 225 (1991), 213–240 | DOI | Zbl

[9] Priymak V. G., Miyazaki T., “Long-wave motions in turbulent shear flows”, Phys. Fluids, 6:10 (1994), 3454–3464 | DOI | Zbl

[10] Priymak V. G., Miyazaki T., “Direct numerical simulation of equilibrium spatially localized structures in pipe flow”, Phys. Fluids, 16:12 (2004), 4221–4234 | DOI

[11] Maks Zh., Metody i tekhnika obrabotki signalov pri fizicheskikh izmereniyakh, Mir, M., 1983

[12] Smith C. R., Metzler S. P., “The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer”, J. Fluid Mech., 129 (1983), 27–54 | DOI

[13] Sirovich L., Ball K. S., Keefe L. R., “Plane waves and structures in turbulent channel flow”, Phys. Fluids A, 2:12 (1990), 2217–2226 | DOI

[14] Wygnanski I. J., Champagne F. H., “On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug”, J. Fluid Mech., 59 (1973), 281–335 | DOI

[15] Hansen R. J., Handler R. A, Leighton R. I., Orszag S. A., “Prediction of turbulence-induced forces on structures from full numerical solutions of the Navier–Stokes equations”, J. Fluids Struct., 1 (1987), 431–443 | DOI

[16] Kim J., Hussain F., “Propagation velocity of perturbations in turbulent channel flow”, Phys. Fluids A, 5:3 (1993), 695–706 | DOI

[17] Morrison W. R. B., Kronauer R. E., “Structural similarity for fully developed turbulence in smooth tubes”, J. Fluid Mech., 39 (1969), 117–141 | DOI

[18] Morrison W. R. B., Bullock K. J., Kronauer R. E., “Experimental evidence of waves in the sublayer”, J. Fluid Mech., 47 (1971), 639–656 | DOI

[19] Darbyshire A. G., Mullin T., “Transition to turbulence in constant-mass-flux pipe flow”, J. Fluid Mech., 289 (1995), 83–114 | DOI

[20] Bandyopadhyay P. R., “Aspects of the equilibrium puff in transitional pipe flow”, J. Fluid Mech., 163 (1986), 439–458 | DOI

[21] Wygnanski I., Sokolov M., Friedman D., “On transition in a pipe. Part 2. The equilibrium puff”, J. Fluid Mech., 69 (1975), 283–304 | DOI

[22] Teitgen R., “Laminar-turbulent transition in pipe flow: development and structure of the turbulent slug”, Laminar-Turbulent Transition, IUTAM Symp., Springer, Stuttgart, Germany, 1980, 27–36

[23] Shan H., Ma B., Zhang Z., Nieuwstadt F. T. M., “Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow”, J. Fluid Mech., 387 (1999), 39–60 | DOI | Zbl

[24] Patel V. C., Head M. R., “Some observations on skin friction and velocity profiles in fully developed pipe and channel flows”, J. Fluid Mech., 38 (1969), 181–201 | DOI

[25] Wei T., Willmarth W. W., “Reynolds-number effects on the structure of a turbulent channel flow”, J. Fluid Mech., 204 (1989), 57–95 | DOI

[26] Shemer L., Wygnanski I., Kit E., “Pulsating flow in a pipe”, J. Fluid Mech., 153 (1985), 313–337 | DOI