Waves and spatially localized structures in turbulent viscous fluid flows. Numerical results
Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 3-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Direct Navier–Stokes simulation of fully turbulent and intermittent viscous incompressible fluid flows in an infinite circular pipe is performed. Calculations were carried out at Reynolds numbers $1800\le\mathrm{Re}\le4000$, based on the mean velocity and pipe diameter $D=2R$. Numerical Navier–Stokes solutions obtained belong to the class of streamwise periodic solutions with large periods $\lambda_\mathrm{max}=16\pi R$. It is demonstrated that the most energetic Fourier components of velocity fluctuations correspond to very low nonzero longitudinal wavenumbers. The structure of turbulent and inter-mittent flows as well as associated wave-like motions are investigated. The possibility and accu-racy of the velocity field approximation by the superposition of travelling and standing waves is analysed. It is shown that the parameters of such representation (wave amplitudes, phase veloci-ties, the position of wave front) are strongly dependent on the inclusion of low longitudinal wavenumbers in the Navier–Stokes simulation. Numerical solutions at $\mathrm{Re}=2200,2350$ describe equilibrium self-sustained flow regimes in which turbulent structures (turbulent puffs) sur-rounded by almost laminar flow propagate downstream while preserving their length. Space-time structure of turbulent puffs is compared with the existing experimental data. Propagation velocity of turbulent puffs and turbulence statistics inside and outside the puff are calculated.
@article{MM_2010_22_2_a0,
     author = {V. G. Priymak},
     title = {Waves and spatially localized structures in turbulent viscous fluid flows. {Numerical} results},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--28},
     year = {2010},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_2_a0/}
}
TY  - JOUR
AU  - V. G. Priymak
TI  - Waves and spatially localized structures in turbulent viscous fluid flows. Numerical results
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 3
EP  - 28
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_2_a0/
LA  - ru
ID  - MM_2010_22_2_a0
ER  - 
%0 Journal Article
%A V. G. Priymak
%T Waves and spatially localized structures in turbulent viscous fluid flows. Numerical results
%J Matematičeskoe modelirovanie
%D 2010
%P 3-28
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/MM_2010_22_2_a0/
%G ru
%F MM_2010_22_2_a0
V. G. Priymak. Waves and spatially localized structures in turbulent viscous fluid flows. Numerical results. Matematičeskoe modelirovanie, Tome 22 (2010) no. 2, pp. 3-28. http://geodesic.mathdoc.fr/item/MM_2010_22_2_a0/

[1] Priimak V. G., “Rezultaty i vozmozhnosti pryamogo chislennogo modelirovaniya turbulentnykh techenii vyazkoi zhidkosti v krugloi trube”, DAN SSSR, 316:1 (1991), 71–76 | MR

[2] Eggels J. G. M., Unger F., Weiss M. H., Westerweel J., Adrian R. J., Friedrich R., Nieuwstadt F. T. M., “Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment”, J. Fluid Mech., 268 (1994), 175–209 | DOI

[3] Nikitin N. V., “Pryamoe chislennoe modelirovanie trekhmernykh turbulentnykh techenii v trubakh krugovogo secheniya”, Izv. RAN MZhG, 1994, no. 6, 14–26 | MR

[4] Priimak V. G., “Opisanie peremezhaemosti turbulentnykh techenii resheniyami uravnenii Nave–Stoksa”, DAN, 377:5 (2001), 634–637

[5] Priymak V. G., Miyazaki T., “Accurate Navier–Stokes investigation of transitional and turbulent flows in a circular pipe”, J. Comput. Phys., 142 (1998), 370–411 | DOI | MR | Zbl

[6] Kantuell B. Dzh., “Organizovannye dvizheniya v turbulentnykh potokakh.”, Vikhri i volny, Sb. statei, Mir, 1984, 9–79

[7] Kim J., Moin P., Moser R., “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech., 177 (1987), 133–166 | DOI | Zbl

[8] Jimenez J., Moin P., “The minimal flow unit in near-wall turbulence”, J. Fluid Mech., 225 (1991), 213–240 | DOI | Zbl

[9] Priymak V. G., Miyazaki T., “Long-wave motions in turbulent shear flows”, Phys. Fluids, 6:10 (1994), 3454–3464 | DOI | Zbl

[10] Priymak V. G., Miyazaki T., “Direct numerical simulation of equilibrium spatially localized structures in pipe flow”, Phys. Fluids, 16:12 (2004), 4221–4234 | DOI

[11] Maks Zh., Metody i tekhnika obrabotki signalov pri fizicheskikh izmereniyakh, Mir, M., 1983

[12] Smith C. R., Metzler S. P., “The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer”, J. Fluid Mech., 129 (1983), 27–54 | DOI

[13] Sirovich L., Ball K. S., Keefe L. R., “Plane waves and structures in turbulent channel flow”, Phys. Fluids A, 2:12 (1990), 2217–2226 | DOI

[14] Wygnanski I. J., Champagne F. H., “On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug”, J. Fluid Mech., 59 (1973), 281–335 | DOI

[15] Hansen R. J., Handler R. A, Leighton R. I., Orszag S. A., “Prediction of turbulence-induced forces on structures from full numerical solutions of the Navier–Stokes equations”, J. Fluids Struct., 1 (1987), 431–443 | DOI

[16] Kim J., Hussain F., “Propagation velocity of perturbations in turbulent channel flow”, Phys. Fluids A, 5:3 (1993), 695–706 | DOI

[17] Morrison W. R. B., Kronauer R. E., “Structural similarity for fully developed turbulence in smooth tubes”, J. Fluid Mech., 39 (1969), 117–141 | DOI

[18] Morrison W. R. B., Bullock K. J., Kronauer R. E., “Experimental evidence of waves in the sublayer”, J. Fluid Mech., 47 (1971), 639–656 | DOI

[19] Darbyshire A. G., Mullin T., “Transition to turbulence in constant-mass-flux pipe flow”, J. Fluid Mech., 289 (1995), 83–114 | DOI

[20] Bandyopadhyay P. R., “Aspects of the equilibrium puff in transitional pipe flow”, J. Fluid Mech., 163 (1986), 439–458 | DOI

[21] Wygnanski I., Sokolov M., Friedman D., “On transition in a pipe. Part 2. The equilibrium puff”, J. Fluid Mech., 69 (1975), 283–304 | DOI

[22] Teitgen R., “Laminar-turbulent transition in pipe flow: development and structure of the turbulent slug”, Laminar-Turbulent Transition, IUTAM Symp., Springer, Stuttgart, Germany, 1980, 27–36

[23] Shan H., Ma B., Zhang Z., Nieuwstadt F. T. M., “Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow”, J. Fluid Mech., 387 (1999), 39–60 | DOI | Zbl

[24] Patel V. C., Head M. R., “Some observations on skin friction and velocity profiles in fully developed pipe and channel flows”, J. Fluid Mech., 38 (1969), 181–201 | DOI

[25] Wei T., Willmarth W. W., “Reynolds-number effects on the structure of a turbulent channel flow”, J. Fluid Mech., 204 (1989), 57–95 | DOI

[26] Shemer L., Wygnanski I., Kit E., “Pulsating flow in a pipe”, J. Fluid Mech., 153 (1985), 313–337 | DOI