Modelling cracking in perforated stringer panels
Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 125-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of mechanics of fracture about nucleation of cracks in supported cross-section stringers to a plate with an infinite number of circular holes is considered. The mathematical description of model of nucleation of cracks is lead. The action of the stringers is modelled by the unknown equivalent concentrated forces in points of connection of edges with a plate. Solution of the unknown parameters describing a germinal crack, is reduced to the solution singular integral equation, from the solution of this equation efforts are found in a strip of nucleation of a crack. The solution defining critical value of external loading at which occurs cracking is received.
@article{MM_2010_22_1_a9,
     author = {M. V. Mir-Salim-zada},
     title = {Modelling cracking in perforated stringer panels},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {125--135},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_1_a9/}
}
TY  - JOUR
AU  - M. V. Mir-Salim-zada
TI  - Modelling cracking in perforated stringer panels
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 125
EP  - 135
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_1_a9/
LA  - ru
ID  - MM_2010_22_1_a9
ER  - 
%0 Journal Article
%A M. V. Mir-Salim-zada
%T Modelling cracking in perforated stringer panels
%J Matematičeskoe modelirovanie
%D 2010
%P 125-135
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_1_a9/
%G ru
%F MM_2010_22_1_a9
M. V. Mir-Salim-zada. Modelling cracking in perforated stringer panels. Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 125-135. http://geodesic.mathdoc.fr/item/MM_2010_22_1_a9/

[1] Mir-Salim-zade M. V., “Treschina so svyazyami mezhdu beregami v izotropnoi srede, usilennoi regulyarnoi sistemoi stringerov”, Mekhanika kompozitnykh materialov, 41:6 (2005), 773–782 | MR

[2] Budiansky B., Evans A. G., Hutchinson J. W., “Fiber-matrix de bonding effects on cracking in aligned fiber ceramic composites”, Int. J. Solid Structures, 32:3–4 (1995), 315–328 | DOI | Zbl

[3] Ji H., de Gennes P. O., “Adhesion via Connector Molecules: The Many-stitch Problem”, Macromolecules, 26 (1993), 520–525 | DOI

[4] Goldstein R. V., Bakirov V. F., Perelmuter M. N., “Modeling of the adhesion strength and fracture kinetics of the microelectronic package polymer-polymer joints”, Modeling and Simulation of Submicron Technology and Devices, Proc. Inst. Phys. Technol. Russian Ac. of Sci., 13, 1997, 115–125

[5] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti, Nauka, M., 1966, 707 pp.

[6] Mirsalimov V. M., Neodnomernye uprugoplasticheskie zadachi, Nauka, M., 1987, 256 pp. | Zbl

[7] Panasyuk V. V., Savruk M. P., Datsyshin A. P., Raspredelenie napryazhenii okolo treschin v plastinakh i obolochkakh, Nauk. dumka, Kiev, 1976, 443 pp. | MR

[8] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968, 512 pp. | MR | Zbl

[9] Ilyushin A. A., Plastichnost, GITTL, M.–L., 1948, 376 pp.

[10] Birger I. A., “Obschie algoritmy resheniya zadach teorii uprugosti, plastichnosti i polzuchesti”, Uspekhi mekhaniki deformiruemykh sred, Nauka, M., 1975, 51–73