Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_1_a4, author = {A. A. Markov}, title = {Micro- and macroscale simulation behind thermal front in an active fine-dyspersated mixture}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {57--68}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_1_a4/} }
TY - JOUR AU - A. A. Markov TI - Micro- and macroscale simulation behind thermal front in an active fine-dyspersated mixture JO - Matematičeskoe modelirovanie PY - 2010 SP - 57 EP - 68 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2010_22_1_a4/ LA - ru ID - MM_2010_22_1_a4 ER -
A. A. Markov. Micro- and macroscale simulation behind thermal front in an active fine-dyspersated mixture. Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 57-68. http://geodesic.mathdoc.fr/item/MM_2010_22_1_a4/
[1] Luss D., Martirosyan K. S., “Carbon Combustion Synthesis of Ferrites: Synthesis and Characterization”, Ind. Eng. Chem. Res., 46:5 (2007), 1492–1499 | DOI | MR
[2] Markov A. A., “Model mikro- i makromasshtabov v dvukh parallelnykh protsessakh khimicheskoi kondensatsii pri techenii smesi gaza s tverdymi chastitsami v kanale s nagretoi stenkoi”, TOKhT, 41:4 (2007), 333–342 | MR
[3] Markov A. A., Filimonov I. A., “Model khimicheskoi kondensatsii dlya techeniya reagiruyuschei smesi v trube”, TOKhT, 42:5 (2008), 1–10
[4] Markov A. A., “Micro and macro scale technique for strongly coupled two-phase flows simulation”, Computers Fluids, 38:7 (2009), 1435–1444 | DOI
[5] Merzhanov A. G., “The Chemistry of Self-Propagating High-Temperature Synthesis”, J. Mater. Chem., 14 (2004), 1779–1786 | DOI
[6] Grigorev Yu. M., Filimonov I. A., “K teorii khimicheskoi kondensatsii v potoke gaza”, Khim. Fizika, 13:10 (1994), 147–155
[7] Grigorev Yu. M., Markov A. A., Filimonov I. A., “Chislennoe modelirovanie khimicheskoi kondensatsii v reagiruyuschem potoke”, Aeromekhanika i gazovaya dinamika, 2001, no. 1, 40–47
[8] Grigorev Yu. M., Doronin S. I., Filimonov I. A., “Kinetika fazovydeleniya v kooperativnykh protsessakh khimicheskogo gazofaznogo osazhdeniya”, Khim. Fizika, 18:12 (1999), 25–30
[9] Catoire L., Swihart M. T., “High-Temperature Kinetics of AlCl3 Decomposition in the Presence of Additives for Chemical Vapor Deposition”, J. Electrchem. Society, 149 (2002), 261–267 | DOI
[10] Zaichik L. I., Pershukov V. A., “Problemy modelirovaniya gazodispersnykh turbulentnykh techenii s goreniem ili fazovymi perekhodami. Obzor”, Izv. RAN. MZhG, 1996, no. 5, 3–19 | MR | Zbl
[11] Markov A. A., “Chislennoe modelirovanie mnogofaznykh reagiruyuschikh potokov s ipolzovaniem approksimatsii povyshennogo poryadka”, Matematicheskoe modelirovanie, 12:6 (2000), 121–127
[12] Markov A. A., “Chislennoe modelirovanie trekhmernykh vyazkikh potokov marshevym metodom s globalnymi iteratsiyami davleniya”, Izv. RAN. MZhG, 1992, no. 5, 132–147 | Zbl
[13] Coltrin M. E., Kee R. J., Rupley F. M., Meeks E., “Surface Chemkin-Iii: A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface Gas-Phase Interface”, SAND96-8217, may 1996, 163
[14] Alekseev B. V., Grishin A. M., Fizicheskaya gazodinamika reagiruyuschikh sred, Vysshaya shkola, M., 1985, 464 pp.
[15] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967 | MR | Zbl
[16] Bouillard L. X., Lyczkowski R. W., Gidaspow D., “Porosity distribution in a fluidised bed with an immersed obstacle”, AIChE Journal, 35:6 (1989), 908–922 | DOI