Micro- and macroscale simulation behind thermal front in an active fine-dyspersated mixture
Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 57-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The micro- and macroscale model for chemically active disperse mixture of gas and fine solid particles behind the thermal wave is presented. The thermal wave, propagating in a cylindrical porous tube, is numerically simulated. The numerically stable technique is developed in order to provide the self-consistent scale capturing for numerical simulation of the thermal wave. The scale simulation is based on the equations for an isolated particle in a finite volume (so called mesoscale) as well as on Navier–Stokes equations that include the averaged heat and mass fluxes calculated using the microequations. For the model kinetics scheme the fields of temperature, mass fractions, and particle radius are presented for the various values of similarity parameters of the problem.
@article{MM_2010_22_1_a4,
     author = {A. A. Markov},
     title = {Micro- and macroscale simulation behind thermal front in an active fine-dyspersated mixture},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {57--68},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_1_a4/}
}
TY  - JOUR
AU  - A. A. Markov
TI  - Micro- and macroscale simulation behind thermal front in an active fine-dyspersated mixture
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 57
EP  - 68
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_1_a4/
LA  - ru
ID  - MM_2010_22_1_a4
ER  - 
%0 Journal Article
%A A. A. Markov
%T Micro- and macroscale simulation behind thermal front in an active fine-dyspersated mixture
%J Matematičeskoe modelirovanie
%D 2010
%P 57-68
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_1_a4/
%G ru
%F MM_2010_22_1_a4
A. A. Markov. Micro- and macroscale simulation behind thermal front in an active fine-dyspersated mixture. Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 57-68. http://geodesic.mathdoc.fr/item/MM_2010_22_1_a4/

[1] Luss D., Martirosyan K. S., “Carbon Combustion Synthesis of Ferrites: Synthesis and Characterization”, Ind. Eng. Chem. Res., 46:5 (2007), 1492–1499 | DOI | MR

[2] Markov A. A., “Model mikro- i makromasshtabov v dvukh parallelnykh protsessakh khimicheskoi kondensatsii pri techenii smesi gaza s tverdymi chastitsami v kanale s nagretoi stenkoi”, TOKhT, 41:4 (2007), 333–342 | MR

[3] Markov A. A., Filimonov I. A., “Model khimicheskoi kondensatsii dlya techeniya reagiruyuschei smesi v trube”, TOKhT, 42:5 (2008), 1–10

[4] Markov A. A., “Micro and macro scale technique for strongly coupled two-phase flows simulation”, Computers Fluids, 38:7 (2009), 1435–1444 | DOI

[5] Merzhanov A. G., “The Chemistry of Self-Propagating High-Temperature Synthesis”, J. Mater. Chem., 14 (2004), 1779–1786 | DOI

[6] Grigorev Yu. M., Filimonov I. A., “K teorii khimicheskoi kondensatsii v potoke gaza”, Khim. Fizika, 13:10 (1994), 147–155

[7] Grigorev Yu. M., Markov A. A., Filimonov I. A., “Chislennoe modelirovanie khimicheskoi kondensatsii v reagiruyuschem potoke”, Aeromekhanika i gazovaya dinamika, 2001, no. 1, 40–47

[8] Grigorev Yu. M., Doronin S. I., Filimonov I. A., “Kinetika fazovydeleniya v kooperativnykh protsessakh khimicheskogo gazofaznogo osazhdeniya”, Khim. Fizika, 18:12 (1999), 25–30

[9] Catoire L., Swihart M. T., “High-Temperature Kinetics of AlCl3 Decomposition in the Presence of Additives for Chemical Vapor Deposition”, J. Electrchem. Society, 149 (2002), 261–267 | DOI

[10] Zaichik L. I., Pershukov V. A., “Problemy modelirovaniya gazodispersnykh turbulentnykh techenii s goreniem ili fazovymi perekhodami. Obzor”, Izv. RAN. MZhG, 1996, no. 5, 3–19 | MR | Zbl

[11] Markov A. A., “Chislennoe modelirovanie mnogofaznykh reagiruyuschikh potokov s ipolzovaniem approksimatsii povyshennogo poryadka”, Matematicheskoe modelirovanie, 12:6 (2000), 121–127

[12] Markov A. A., “Chislennoe modelirovanie trekhmernykh vyazkikh potokov marshevym metodom s globalnymi iteratsiyami davleniya”, Izv. RAN. MZhG, 1992, no. 5, 132–147 | Zbl

[13] Coltrin M. E., Kee R. J., Rupley F. M., Meeks E., “Surface Chemkin-Iii: A Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface Gas-Phase Interface”, SAND96-8217, may 1996, 163

[14] Alekseev B. V., Grishin A. M., Fizicheskaya gazodinamika reagiruyuschikh sred, Vysshaya shkola, M., 1985, 464 pp.

[15] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1967 | MR | Zbl

[16] Bouillard L. X., Lyczkowski R. W., Gidaspow D., “Porosity distribution in a fluidised bed with an immersed obstacle”, AIChE Journal, 35:6 (1989), 908–922 | DOI