Numerical integration of stiff systems with low accuracy
Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 46-56

Voir la notice de l'article provenant de la source Math-Net.Ru

An L-stable (2,1)-method and an explicit two-stage Runge–Kutta type scheme are constructed, both schemes of order two. A numerical formula of order one is developed that is based on the stages of the explicit method and its stability interval is extended to 8. An integration algorithm of variable order and step is constructed that is based on the stages of the three schemes. The most effective numerical scheme is chosen for each step by means of stability control inequality. The results are given that confirm the effectiveness of the algorithm.
@article{MM_2010_22_1_a3,
     author = {A. E. Novikov and E. A. Novikov},
     title = {Numerical integration of stiff systems with low accuracy},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {46--56},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_1_a3/}
}
TY  - JOUR
AU  - A. E. Novikov
AU  - E. A. Novikov
TI  - Numerical integration of stiff systems with low accuracy
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 46
EP  - 56
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_1_a3/
LA  - ru
ID  - MM_2010_22_1_a3
ER  - 
%0 Journal Article
%A A. E. Novikov
%A E. A. Novikov
%T Numerical integration of stiff systems with low accuracy
%J Matematičeskoe modelirovanie
%D 2010
%P 46-56
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_1_a3/
%G ru
%F MM_2010_22_1_a3
A. E. Novikov; E. A. Novikov. Numerical integration of stiff systems with low accuracy. Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 46-56. http://geodesic.mathdoc.fr/item/MM_2010_22_1_a3/