Numerical integration of stiff systems with low accuracy
Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 46-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

An L-stable (2,1)-method and an explicit two-stage Runge–Kutta type scheme are constructed, both schemes of order two. A numerical formula of order one is developed that is based on the stages of the explicit method and its stability interval is extended to 8. An integration algorithm of variable order and step is constructed that is based on the stages of the three schemes. The most effective numerical scheme is chosen for each step by means of stability control inequality. The results are given that confirm the effectiveness of the algorithm.
@article{MM_2010_22_1_a3,
     author = {A. E. Novikov and E. A. Novikov},
     title = {Numerical integration of stiff systems with low accuracy},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {46--56},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_1_a3/}
}
TY  - JOUR
AU  - A. E. Novikov
AU  - E. A. Novikov
TI  - Numerical integration of stiff systems with low accuracy
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 46
EP  - 56
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_1_a3/
LA  - ru
ID  - MM_2010_22_1_a3
ER  - 
%0 Journal Article
%A A. E. Novikov
%A E. A. Novikov
%T Numerical integration of stiff systems with low accuracy
%J Matematičeskoe modelirovanie
%D 2010
%P 46-56
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_1_a3/
%G ru
%F MM_2010_22_1_a3
A. E. Novikov; E. A. Novikov. Numerical integration of stiff systems with low accuracy. Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 46-56. http://geodesic.mathdoc.fr/item/MM_2010_22_1_a3/

[1] Artemev S. S., Demidov G. V., Novikov E. A., Yumatova L. A., “Ob optimizatsii parametrov metodov chislennogo resheniya zadachi Koshi dlya obyknovennykh differentsialnykh uravnenii”, Chislennye metody mekhaniki sploshnoi sredy, 1984, no. 2, 5–14

[2] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999, 685 pp.

[3] Byrne G. D., Hindmarsh A. C., “ODE solvers: a review of current and coming attractions”, J. of Comput. Physics, 1987, no. 70, 1–62 | DOI | MR | Zbl

[4] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Computer, 1963, no. 5, 329–330 | MR | Zbl

[5] Novikov E. A., Novikov V. A., Yumatova L. A., O povyshenii effektivnosti algoritma integrirovaniya na osnove formuly tipa Rozenbroka vtorogo poryadka tochnosti za schet zamorazhivaniya matritsy Yakobi, Preprint No 592, VTs SO AN SSSR, Novosibirsk, 1985, 26 pp. | MR

[6] Novikov E. A., Dvinskii A. L., “Zamorazhivanie matritsy Yakobi v metodakh tipa Rozenbroka”, Vychislitelnye tekhnologii, 10 (2005), 108–114

[7] Novikov E. A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997, 197 pp. | MR

[8] Novikov E. A., Shitov Yu. A., Shokin Yu. I., “Odnoshagovye metody resheniya zhestkikh sistem”, DAN SSSR, 301:6 (1988), 1310–1314 | MR

[9] Novikov E. A., Shitov Yu. A., Algoritm integrirovaniya zhestkikh sistem na osnove $(m,k)$-metoda vtorogo poryadka tochnosti s chislennym vychisleniem matritsy Yakobi, Preprint No 20, VTs SO AN SSSR, Krasnoyarsk, 1988, 23 pp.

[10] Demidov G. V., Novikov E. A., “Otsenka oshibki odnoshagovykh metodov integrirovaniya obyknovennykh differentsialnykh uravnenii”, Chisl. metody mekhaniki splosh. sredy, 16:1 (1985), 27–42 | MR | Zbl

[11] Knaub L. V., Laevskii Yu. M., Novikov E. A., “Algoritm integrirovaniya peremennogo poryadka i shaga na osnove yavnogo dvukhstadiinogo metoda Runge–Kutty”, SibZhVM, 10:2 (2007), 177–185

[12] http://www.netlib.org/odepack/index.html

[13] Enright W. H., Hull T. E., “Comparing numerical methods for the solutions of systems of ODE's”, BIT, 15 (1975), 10–48 | DOI | Zbl

[14] Mazzia F., Iavernaro F., Test Set for Initial Value Problem Solvers, Department of Mathematics, University of Bari, august 2003; http://www.dm.uniba.it/~testset

[15] http://pitagora.dm.uniba.it/~testset/src/problems/medakzo.f