Optimal synthesis of the measurement computer-aided transformers for interval models of the gauges with distributed parameters
Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 17-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Requirements on the measurement device's parameters providing the best quality of the measurement computer-aided system (MCS) and the ones providing the best quality of measurement device itself (without computer) are principally different. Previously the gauges with concentrated parameters were considered, see references; in this paper on the basis of mathematical theory of measurement computer systems some problems of interval reduction for measurement computer-aided transformers (MCTs) based on gauges with distributed parameters are solved. The heat-conducting rod with the measuring devices placed along it is considered as the gauge with distributed parameters. The dependencies obtained can be used for optimal synthesis of the MCTs based on the gauges with distributed parameters.
@article{MM_2010_22_1_a1,
     author = {D. M. Novitsky and Yu. P. Pyt'ev and B. I. Volkov},
     title = {Optimal synthesis of the measurement computer-aided transformers for interval models of the gauges with distributed parameters},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--31},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_1_a1/}
}
TY  - JOUR
AU  - D. M. Novitsky
AU  - Yu. P. Pyt'ev
AU  - B. I. Volkov
TI  - Optimal synthesis of the measurement computer-aided transformers for interval models of the gauges with distributed parameters
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 17
EP  - 31
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_1_a1/
LA  - ru
ID  - MM_2010_22_1_a1
ER  - 
%0 Journal Article
%A D. M. Novitsky
%A Yu. P. Pyt'ev
%A B. I. Volkov
%T Optimal synthesis of the measurement computer-aided transformers for interval models of the gauges with distributed parameters
%J Matematičeskoe modelirovanie
%D 2010
%P 17-31
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_1_a1/
%G ru
%F MM_2010_22_1_a1
D. M. Novitsky; Yu. P. Pyt'ev; B. I. Volkov. Optimal synthesis of the measurement computer-aided transformers for interval models of the gauges with distributed parameters. Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/MM_2010_22_1_a1/

[1] Pytev Yu. P., Matematicheskie metody interpretatsii eksperimenta, Vysshaya shkola, M., 1989, 351 pp.

[2] Pytev Yu. P., Metody matematicheskogo modelirovaniya izmeritelno-vychislitelnykh sistem, Fizmatlit, M., 2002, 384 pp. ; второе издание, 2004, 400 с. | MR

[3] B. I. Volkov, Yu. P. Pytev, “Izmeritelno-vychislitelnye preobrazovateli”, Datchiki i sistemy, 2000, no. 6(15), 17–23

[4] Volkov B. I., Pytev Yu. P., “Izmeritelno-vychislitelnye preobrazovateli na osnove datchikov s sosredotochennymi parametrami”, ZhVMiMF, 43:8 (2003), 1228–1242 | MR | Zbl

[5] Novitskii D. M., Pytev Yu. P., Volkov B. I., “Ob izmeritelno-vychislitelnykh sistemakh na osnove datchikov pervogo i vtorogo poryadkov”, Matematicheskoe modelirovanie, 18:6 (2006), 15–28 | MR | Zbl

[6] Pytev Yu. P., Vozmozhnost kak alternativa veroyatnosti. Matematicheskie i empiricheskie osnovy, primeneniya, Fizmatlit, M., 2006

[7] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Izd-vo mosk. un-ta, M., 1999 | MR

[8] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR | Zbl

[9] Dorofeev K. Y., Nikolaeva N. N., Titarenko V. N., Yagola A. G., “New approaches to error estimation to ill-posed problems with applications to inverse problems of heat conductivity”, Inverse and Ill-posed Problems, 10:2 (2002), 107–212 | MR