Mathematical model of exothermal hydride formation
Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the model of hydride composition. A single symmetrical metal powder particle is considered. Heat releasing and sorption effects are taken into consideration. We analyze the effect of a few concurrent processes. Stages of metal saturation with hydrogen, skin appearance, “contracting envelope”, and final saturation of hydride up to the equilibrium concentration are described by the appropriate mathematical constructions. These are systems of ordinary differential equations and non-classical boundary-value problems with moving bound for the diffusion equation. Due to symmetry of the particle we can consider only one spatial variable. For the boundary-value problems we present a lattice numerical method and prove its convergence to a weak solution to the problem; therefore its existence is proved. Results of some numerical experiments are presented as an illustration; we show that the shape of the powder particles do not influence much on the sorption and heat releasing rates.
@article{MM_2010_22_1_a0,
     author = {I. A. Chernov},
     title = {Mathematical model of exothermal hydride formation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_1_a0/}
}
TY  - JOUR
AU  - I. A. Chernov
TI  - Mathematical model of exothermal hydride formation
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 3
EP  - 16
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_1_a0/
LA  - ru
ID  - MM_2010_22_1_a0
ER  - 
%0 Journal Article
%A I. A. Chernov
%T Mathematical model of exothermal hydride formation
%J Matematičeskoe modelirovanie
%D 2010
%P 3-16
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_1_a0/
%G ru
%F MM_2010_22_1_a0
I. A. Chernov. Mathematical model of exothermal hydride formation. Matematičeskoe modelirovanie, Tome 22 (2010) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2010_22_1_a0/

[1] N. Sirosh, “Hydrogen Composite Tank Program”, Proceedings of the 2002 U.S. DOE Hydrogen Program Review, 2002, 1–7

[2] A. A. Yukhimchuk, A. A. Kurdyumov, I. L. Malkov (red.), Vzaimodeistvie izotopov vodoroda s konstruktsionnymi materialami, Sbornik dokladov III mezhdunarodnoi konferentsii i III mezhdunarodnoi shkoly molodykh uchenykh i spetsialistov, RFYaTs-VNIIEF, Sarov, 2007, 367 pp.

[3] P. Marty et al., “Numerical simulation of heat and mass transfer during the absorption of hydrogen in a magnesium hydride”, Energy Conversion and Management, 47 (2006), 3632–3643 | DOI

[4] J. Bloch, “The Hydriding Kinetics of Activated Uranium Powder Under Low (Near Equilibrium) Hydrogen Pressure”, Journal of Alloys and Compounds, 361 (2002), 130–137 | DOI

[5] F. J. Castro, G. Meyer, “Thermal Desorption Spectroscopy (TDS) Method for Hydrogen Desorption Characterization. I. Theoretical Aspects”, Journal of Alloys and Compounds, 330–332 (2002), 59–63 | DOI

[6] I. Gabis, E. Evard, A. Voit, I. Chernov, Yu. Zaika, “Kinetics of Decomposition of Erbium Hydride”, Journal of Alloys and Compounds, 356–357 (2003), 353–357 | DOI

[7] Yu. V. Zaika, I. A. Chernov, “Kraevaya zadacha s dinamicheskimi granichnymi usloviyami i dvizhuscheisya granitsei”, Matematicheskoe modelirovanie, 16:4 (2004), 3–16 | Zbl

[8] Yu. V. Zaika, N. I. Rodchenkova, “Modelirovanie vysokotemperaturnogo pika TDS-spektra degidrirovaniya”, Matematicheskoe modelirovanie, 18:4 (2006), 100–112 | Zbl

[9] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[10] B. M. Budak, F. P. Vasilev, A. B. Uspenskii, “Raznostnyi metod resheniya nekotorykh kraevykh zadach tipa Stefana”, Chislennye metody v gazovoi dinamike, 4, ed. B. M. Pavlov, MGU, M., 1965, 139–183 | MR