The basic element method
Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 115-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic element method (BEM) for decomposition of the algebraic polynomial via one cubic and three quadratic parabolas (basic elements) is developed within the 4-point transformation technique. Representation of the polynomial via basic elements gives a lever at solving various tasks of applied mathematics. So, in the polynomial approximation and smoothing problems the BEM presentation allows one to reduce the computational complexity of algorithms and increase their stability for error by choosing the internal relationship structure between variable and control parameters.
Keywords: data smoothing, least squares method, approximation by polynomials, linear regression, efficiency of algorithms.
Mots-clés : 4-point transformation
@article{MM_2010_22_12_a8,
     author = {N. D. Dikusar},
     title = {The basic element method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {115--136},
     publisher = {mathdoc},
     volume = {22},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_12_a8/}
}
TY  - JOUR
AU  - N. D. Dikusar
TI  - The basic element method
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 115
EP  - 136
VL  - 22
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_12_a8/
LA  - ru
ID  - MM_2010_22_12_a8
ER  - 
%0 Journal Article
%A N. D. Dikusar
%T The basic element method
%J Matematičeskoe modelirovanie
%D 2010
%P 115-136
%V 22
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_12_a8/
%G ru
%F MM_2010_22_12_a8
N. D. Dikusar. The basic element method. Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 115-136. http://geodesic.mathdoc.fr/item/MM_2010_22_12_a8/

[1] Uilkinson Dzh. X., Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970

[2] Louson Ch., Khenson R., Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986 | MR

[3] Seber Dzh., Lineinyi regressionnyi analiz, Mir, M., 1980 | Zbl

[4] Meindonald Dzh., Vychislitelnye algoritmy v prikladnoi statistike, FiS, M., 1988 | MR

[5] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[6] Dikusar N. D., “Diskretnye proektivnye preobrazovaniya na koordinatnoi ploskosti”, Matematicheskoe modelirovanie, 3:10 (1991), 50–64 | MR | Zbl

[7] Dikoussar N. D., “Function parameterization by using 4-point transforms”, Comput. Phys. Commun., 99 (1997), 235–254 | DOI | Zbl

[8] Dikoussar N. D., “Four-Point Transformation Methods in Approximation and the Smoothing Problems”, Physics of Particles and Nuclei Letters, 5:3 (2008), 317–323 | DOI

[9] Dikusar N. D., Kusochno-kubicheskoe priblizhenie i sglazhivanie krivykh v rezhime adaptatsii, Soobsch. OIYaI, R10-99-168, Dubna, 1999, 18 pp.

[10] Török Cs., Dikoussar N. D., “Approximation with Discrete Projective Transformation”, Comput. and Math. with Appl., 38 (1999), 211–220 | DOI | MR | Zbl

[11] Dikusar N. D., Torok Ch., “Avtomaticheskii poisk uzlov dlya kusochno-kubicheskoi approksimatsii”, Matematicheskoe modelirovanie, 18:3 (2006), 23–40 | MR | Zbl

[12] Dikoussar N. D., Török Cs., “Data Smoothing by Splines with Free Knots”, Physics of Particles and Nuclei Letters, 5:3 (2008), 324–327 | DOI

[13] Dikoussar N. D., Török Cs., “On One Approach to Local Surface Smoothing”, Kybernetika, 43:4 (2007), 533–546 | MR | Zbl

[14] Török Cs., Dikoussar N. D., MS.NET Components for Piecewise-Cubic Approximation, Commun. of JINR, P10-2004-202, Dubna, 2004

[15] Dikoussar N. D., A Local Cubic Smoothing in an Adaptation Mode, Commun. of JINR, E10-2001-48, Dubna, 2001, 21 pp.

[16] Revayova M., Török Cs., “Piecewise Approximation and Neural Networks”, Kybernetika, 43:4 (2007), 547–559 | MR | Zbl

[17] Matejčikova A., Török Cs., Piecewise smoothing with two-part polynomial scheme, Commun. of JINR, E11-2008-205, Dubna, 2008, 8 pp.

[18] Khardle V., Prikladnaya neparametricheskaya regressiya, Mir, M., 1993 | MR

[19] Vazan M. T., Stokhasticheskaya approksimatsiya, Mir, M., 1972 | MR

[20] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[21] Kalitkin N. N., Chislennye metody, FML, M., 1978 | MR

[22] Dreiper N. R., Smit G., Prikladnoi regressionnyi analiz, Dialektika, M.–S.Pb., 2007

[23] Fridlender B., “Adaptivnye algoritmy dlya filtrov s konechnoi impulsnoi kharakteristikoi”, Adaptivnye filtry, eds. Kouen K. F. N., Grant P. M., Mir, M., 1988, 45–81

[24] Brebbiya K., Telles Zh., Vroubel L., Metody konechnykh elementov, Mir, M., 1987 | MR

[25] Simoes J. B., Simoes P. C. P. S., Correia C. M. B. A., “Nuclear Spectroscopy Pulse Height Analysis Based on Digital Signal Processing Techniques”, IEEE Transactions on Nuclear Science, 42:4 (1995), 700–704 | DOI

[26] Golub Dzh., Van Loun Ch., Matrichnyi analiz, Mir, M., 1999, 58 pp.

[27] Golyandina N., Nekrutkin V., Zhigljavsky A., Analisys of Time Series Structure: SSA and Related Techniques, Chapman and Hall/CRC, Boca Raton, Florida, 2001, 13–78 | MR