Definition of statistical characteristics of the gas flow in combustion chamber under moveable piston in the numerical simulation
Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes an approach to definition of flows integral length scales by analysis the results of direct simulations of viscous gas dynamics equations without artificial turbulent models. Simulations of axisymmetric gas flow within cylindrical chamber under moveable piston were carried out. The sufficient dependency of results obtained on velocity field averaging method was observed. The method developed was applied to define integral length scales during compression and expansion stroke.
Keywords: direct numerical simulation, Navier–Stokes equations, сorrelation characteristics, axisymmetric flow, combustion chamber.
Mots-clés : turbulence
@article{MM_2010_22_12_a3,
     author = {E. N. Ivanov and M. F. Ivanov},
     title = {Definition of statistical characteristics of the gas flow in combustion chamber under moveable piston in the numerical simulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {22},
     number = {12},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_12_a3/}
}
TY  - JOUR
AU  - E. N. Ivanov
AU  - M. F. Ivanov
TI  - Definition of statistical characteristics of the gas flow in combustion chamber under moveable piston in the numerical simulation
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 33
EP  - 48
VL  - 22
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_12_a3/
LA  - ru
ID  - MM_2010_22_12_a3
ER  - 
%0 Journal Article
%A E. N. Ivanov
%A M. F. Ivanov
%T Definition of statistical characteristics of the gas flow in combustion chamber under moveable piston in the numerical simulation
%J Matematičeskoe modelirovanie
%D 2010
%P 33-48
%V 22
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_12_a3/
%G ru
%F MM_2010_22_12_a3
E. N. Ivanov; M. F. Ivanov. Definition of statistical characteristics of the gas flow in combustion chamber under moveable piston in the numerical simulation. Matematičeskoe modelirovanie, Tome 22 (2010) no. 12, pp. 33-48. http://geodesic.mathdoc.fr/item/MM_2010_22_12_a3/

[1] Batchelor G. K., “The theory of axisymmetric turbulence”, Proc. Roy. Soc. A, 186 (1946), 480–502 | DOI | MR | Zbl

[2] Chandrasekhar S., “The theory of axisymmetric turbulence”, Phil. Trans. Roy. Soc. A, 242 (1950), 557–577 | DOI | MR | Zbl

[3] Breuer S., Oberlack M., Peters N., “Non-isotropic length scales during the compression stroke of a motored piston engine”, Flow, Turbulence and Combustion, 74 (2005), 145–167 | DOI | Zbl

[4] Sandri G., Cerasoli C., Fundamental research in turbulent modeling, ARP Rep., 438, 1981

[5] Akkerman V., Ivanov M. F., Bychkov V., “Turbulent Flow Produced by Piston Motion in a Spark-Ignition Engine”, Flow, Turbulence and Combustion, 82 (2009), 317–337 | DOI | Zbl

[6] Heywood J. B., Internal combustion engine fundamentals, Mc. GrawHill, New-York, 1988

[7] Mathur S., Tondon P. K., Saxena S. C., “Heat conductivity in ternary gas mixtures”, Mol. Phys., 12 (1967), 569

[8] Belotserkovskii O. M., Davydov Yu. M., Metod krupnykh chastits v gazovoi dinamike, Nauka, M., 1982

[9] Liberman M. A., Ivanov M. F., Peil O. E., Valiev D. M., “Numerical modeling of the propagating flame and knock occurrence in spark-ignition engines”, Combust. Sci. and Tech., 177 (2005), 151–182 | DOI

[10] Liberman M. A., Ivanov M. F., Valiev D. M., “Hot spot formation by the propagating flame and the influence of EGR on knock occurrence in SI engines”, Combust. Sci. and Tech., 178 (2006), 1613–1640 | DOI

[11] Volkov K. N., Emelyanov V. N., Modelirovanie krupnykh vikhrei v raschëtakh turbulentnykh techenii, Fizmatlit, M., 2008