Approximate hedging strategy in the (B,S,F)-market model
Matematičeskoe modelirovanie, Tome 22 (2010) no. 11, pp. 29-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The market model consisting of a stock, a risk-free asset and a cash flow ((B,S,F)-market) is considered. It is assumed that the payment is provided for short-sales. The set of the possible prices of the stock has structure of a binary tree. It is supposed that a payment function is defined on the set of terminal nodes of a tree. The work purpose is construction of a self-financed strategy providing the given value of the payment function in terminal nodes and formation of the initial portfolio of the minimum cost. The approximate algorithms with an estimated accuracy of solution of the problem are developed. Results of numerical experiments and examples are given.
Keywords: stock, risk-free asset, cash flow, self-financing portfolio, payment function, completeness, arbitrage-freedom.
@article{MM_2010_22_11_a2,
     author = {E. M. Bronshtein and E. R. Kolyasnikova},
     title = {Approximate hedging strategy in the {(B,S,F)-market} model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {22},
     number = {11},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_11_a2/}
}
TY  - JOUR
AU  - E. M. Bronshtein
AU  - E. R. Kolyasnikova
TI  - Approximate hedging strategy in the (B,S,F)-market model
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 29
EP  - 38
VL  - 22
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_11_a2/
LA  - ru
ID  - MM_2010_22_11_a2
ER  - 
%0 Journal Article
%A E. M. Bronshtein
%A E. R. Kolyasnikova
%T Approximate hedging strategy in the (B,S,F)-market model
%J Matematičeskoe modelirovanie
%D 2010
%P 29-38
%V 22
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_11_a2/
%G ru
%F MM_2010_22_11_a2
E. M. Bronshtein; E. R. Kolyasnikova. Approximate hedging strategy in the (B,S,F)-market model. Matematičeskoe modelirovanie, Tome 22 (2010) no. 11, pp. 29-38. http://geodesic.mathdoc.fr/item/MM_2010_22_11_a2/

[1] Melnikov A. V., Popova N. V., Skornyakova V. S., Matematicheskie metody finansovogo analiza, “Ankil”, M., 2006, 440 pp.

[2] Fëlmer G., Shid A., Vvedenie v stokhasticheskie finansy. Diskretnoe vremya, Per. s angl., MTsNMO, M., 2008, 496 pp.

[3] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, Fazis, M., 1998, 512 pp.; т. 2, 544 с.

[4] Bronshtein E. M., “Rynok aktsii i obligatsii: algebraicheskii podkhod”, Trudy tretei vserossiiskoi FAM' 2004 konferentsii, ch. 2, IVM SO RAN, Krasnoyarsk, 2004, 45–53

[5] Bronshtein E. M., Rachev S., “Zadacha formirovaniya optimalnogo portfelya aktsii i obligatsii s uchetom transaktsionnykh raskhodov”, Sibirskii zhurnal industrialnoi matematiki, 11:4 (2008), 25–33 | MR

[6] Bronshtein E. M., Kolyasnikova E. R., “$(B,S,F)$-rynok i ego svoistva”, Upravlenie riskom, 2009, no. 1, 50–64 | MR

[7] Bronshtein E. M., Kolyasnikova E. R., “Model $(B,S,F)$-rynka i khedzhiruyuschie strategii”, Upravlenie riskom, 2010, no. 2, 55–64