Temperature and stress field modeling in accreted ice on the cylinder in a~supercooled gas-drop flow
Matematičeskoe modelirovanie, Tome 22 (2010) no. 10, pp. 119-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The thermal stresses in accreted ice due to conduction of change of phase heat releasing on the ice surface because of solidification of supercooled drops are investigated. Based on the test investigations of a model problem (for the ice slab in a form of cylindrical segment), it is shown that the local values of some components of stress tensor in the slab may exceed the ultimate strength (measured earlier in laboratory conditions) and eventually lead to spalling and cutting-off anew accreted layers by the flow. The obtained results testify to appropriateness of self-consistent approach for the problem as mutual investigations of both surface icing and stress propagation within growing ice slab simultaneously.
Keywords: mathematical simulation, icing, thermal stresses.
Mots-clés : phase transition
@article{MM_2010_22_10_a8,
     author = {A. V. Kashevarov and A. L. Stasenko},
     title = {Temperature and stress field modeling in accreted ice on the cylinder in a~supercooled gas-drop flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {22},
     number = {10},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_10_a8/}
}
TY  - JOUR
AU  - A. V. Kashevarov
AU  - A. L. Stasenko
TI  - Temperature and stress field modeling in accreted ice on the cylinder in a~supercooled gas-drop flow
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 119
EP  - 126
VL  - 22
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_10_a8/
LA  - ru
ID  - MM_2010_22_10_a8
ER  - 
%0 Journal Article
%A A. V. Kashevarov
%A A. L. Stasenko
%T Temperature and stress field modeling in accreted ice on the cylinder in a~supercooled gas-drop flow
%J Matematičeskoe modelirovanie
%D 2010
%P 119-126
%V 22
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_10_a8/
%G ru
%F MM_2010_22_10_a8
A. V. Kashevarov; A. L. Stasenko. Temperature and stress field modeling in accreted ice on the cylinder in a~supercooled gas-drop flow. Matematičeskoe modelirovanie, Tome 22 (2010) no. 10, pp. 119-126. http://geodesic.mathdoc.fr/item/MM_2010_22_10_a8/

[1] Bragg M. B., Brören A. P., Blumenthal L. A., “Iced-airfoil aerodynamics”, Progress in Aerospace Sciences, 41 (2005), 323–362 | DOI

[2] Stasenko A. L., Tolstykh A. I., Shirobokov D. A., “K modelirovaniyu oledeneniya samoleta: dinamika kapel i poverkhnost smachivaniya”, Matematicheskoe modelirovanie, 13:6 (2001), 81–86 | Zbl

[3] Kashevarov A. V., Stasenko A. L., “Vynuzhdennaya kristallizatsiya kapel pered telom, dvizhuschimsya v pereokhlazhdennom oblake”, Matematicheskoe modelirovanie, 22:2 (2010), 139–147 | Zbl

[4] Olsen W., Walker E., Experimental evidence for modifying the current physical model for icing accretion on aircraft surfaces, NASA TR–87–184, 1987, 45 pp.

[5] Tenishev R. Kh., Termodinamika i dinamika protsessa obledeneniya poverkhnosti LA v polete, Trudy Letno-ispytatelnogo in-ta, 505, 1986, 52 pp.

[6] Kutateladze S. S., Osnovy teorii teploobmena, Atomizdat, M., 1979, 416 pp.

[7] Kovalenko A. D., Osnovy termouprugosti, Naukova dumka, Kiev, 1970, 308 pp. | Zbl

[8] Shuleikin V. V., Fizika morya, Nauka, M., 1968, 1084 pp.

[9] Malkov M. P., Danilov I. B., Zeldovich A. G., Fradkov A. B., Spravochnik po fiziko-tekhnicheskim osnovam glubokogo okhlazhdeniya, Gosenergoizdat, M.–L., 1963, 416 pp.

[10] Jellinek H. H. G., “The influence of imperfections on the strength of ice”, J. Appl. Phys., 27:10 (1958), 1198–1209 | DOI

[11] Reich A., Goodrich B. F., Scavuzzo R., Chu M., Survey of mechanical properties of impact ice, AIAA Paper 94-0712, 1994, 7 pp.

[12] Scavuzzo R. J., Chu M. L., Ananthaswamy V., “Influence of aerodynamic forces on ice shedding”, J. Aircraft, 31:3 (1994), 526–530 | DOI