Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment
Matematičeskoe modelirovanie, Tome 22 (2010) no. 10, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of multiplicative fluctuations on pattern formation were researched. It was received the system which described interaction of undamped modes when soft mode instability were developed. It was shown that the fluctuations of parameters leads to changing of eigenvalues of unstable modes and parametric excitation of system. The computational modeling of spatial structures evolution were conducted. Changing of fluctuating level of dynamic variables in process of dissipative pattern formation which conditioned by changing of external random field parameters were investigated. The computational modeling of evolution of spiral waves and complex autowave patterns in external random field were researched. The spiral tip drift trajectories were classified.
Keywords: multiplicative fluctuations of parameters, noise-induced parametrical excitation of Turing patterns, Ginzburg–Landau equation, numerical modeling.
Mots-clés : spatial and spatiotemporal pattern formation, unstable modes
@article{MM_2010_22_10_a0,
     author = {S. E. Kurushina and A. A. Ivanov and Yu. V. Zhelnov and I. P. Zavershinskii and V. V. Maximov},
     title = {Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {22},
     number = {10},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2010_22_10_a0/}
}
TY  - JOUR
AU  - S. E. Kurushina
AU  - A. A. Ivanov
AU  - Yu. V. Zhelnov
AU  - I. P. Zavershinskii
AU  - V. V. Maximov
TI  - Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment
JO  - Matematičeskoe modelirovanie
PY  - 2010
SP  - 3
EP  - 17
VL  - 22
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2010_22_10_a0/
LA  - ru
ID  - MM_2010_22_10_a0
ER  - 
%0 Journal Article
%A S. E. Kurushina
%A A. A. Ivanov
%A Yu. V. Zhelnov
%A I. P. Zavershinskii
%A V. V. Maximov
%T Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment
%J Matematičeskoe modelirovanie
%D 2010
%P 3-17
%V 22
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2010_22_10_a0/
%G ru
%F MM_2010_22_10_a0
S. E. Kurushina; A. A. Ivanov; Yu. V. Zhelnov; I. P. Zavershinskii; V. V. Maximov. Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment. Matematičeskoe modelirovanie, Tome 22 (2010) no. 10, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2010_22_10_a0/

[1] Medvinsky A. B., Petrovskii S. V., Tikhonova I. A., Malchow H., Li Bai-Lian, “Spatiotemporal complexity of plankton and fish dynamics”, SIAM Review, 44 (2002), 311–370 | DOI | MR | Zbl

[2] Liu Quan-Xing, Sun Gui-Quan, Li Bai-Lian, Jin Zhen, Emergence of spatiotemporal chaos driven by farfield breakup of spiral waves in the plankton ecological systems, 2008, arXiv: 0704.0322v3[nlin.PS]

[3] Malchow H., Hilker F. M., Petrovskii S. V., “Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system”, Discrete and Continuous Dynamical Systems Ser. B, 4:3 (2004), 705–711 | DOI | MR | Zbl

[4] Malchow H., Hilker F. M., Sarkar R. R., Brauer K., “Spatiotemporal patterns in an excitable plankton system with lysogenic viral infection”, Math. and Computer Modeling, 42 (2005), 1035–1048 | DOI | MR | Zbl

[5] Malchow H., Hilker F. M., Petrovskii S. V., Brauer K., “Oscillations and waves in a virally infected plankton system. Part I. The lysogenic stage”, Ecological Complexity, 1 (2004), 211–223 | DOI

[6] Malchow H., “Motional instabilities in prey-predator systems”, J. Theor. Biol., 204 (2000), 639–647 | DOI

[7] Garvie M. R., Trenchea C., Analysis of two generic spatially extended predator-prey models, Preprint submitted to Elsevier Science, 2006, 16 pp.

[8] Baurmann M., Gross Th., Feudel U., Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcation, Preprint submitted to Journal of Theoretical Biology, 2006, 18 pp. | MR

[9] Malchow H., “Spatiotemporal pattern formation in nonlinear non-equilibrium plankton dynamics”, Proc. R. Soc. Lond. B, 251 (1993), 103–109 | DOI

[10] Mikhailov A. S., Uporov I. V., “Kriticheskie yavleniya v sredakh s razmnozheniem, raspadom i diffuziei”, UFN, 144:1 (1984), 79–114

[11] Kurushina S. E., Maksimov V. V., “Shumoindutsirovannye fazovye perekhody v protsessakh konkurentsii vo fluktuiruyuschikh sredakh”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 2010, no. 1, 4–16

[12] Scheffer M., “Fish and nutrients interplay determines algal biomass: a minimal model”, OIKOS, 62 (1991), 271–282 | DOI

[13] Satnoianu R. A., Menzinger M., “Non-Turing stationary patterns in flow-distributed oscillators with general diffusion and flow rates”, Phys. Rev. E, 62:1 (2000), 113–119 | DOI | MR

[14] Satnoianu R. A., Menzinger M., Maini P. K., “Turing instabilities in general systems”, J. Math. Biol., 41 (2000), 493–512 | DOI | MR | Zbl

[15] Khaken G., Sinergetika, Mir, M., 1980, 406 pp. | MR

[16] Akhmanov S. A., Dyakov Yu. E., Chirkin A. S., Vvedenie v statisticheskuyu radiofiziku i optiku, Nauka, Gl. red. fiz.-mat. lit., M., 1981, 640 pp. | MR

[17] Rytov S. M., Vvedenie v statisticheskuyu radiofiziku, Nauka, M., 1966, 404 pp.

[18] Klyatskin V. I., Stokhasticheskie uravneniya glazami fizika, Fizmatlit, M., 2001, 528 pp. | MR | Zbl

[19] Stratonovich R. L., Nelineinaya neravnovesnaya termodinamika, Nauka, Gl. red. fiz.-mat. lit., M., 1985, 480 pp. | MR | Zbl

[20] Kurushina S. E., “Analiticheskoe issledovanie i chislennoe modelirovanie kontrastnykh dissipativnykh struktur v pole fluktuatsii dinamicheskikh peremennykh”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 2009, no. 6, 125–138

[21] Kurushina S. E., Ivanov A. A., “Dissipativnye struktury v sisteme reaktsiya-diffuziya v pole multiplikativnykh fluktuatsii”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 18:3 (2010), 85–103

[22] Astashkina E. V., Romanovskii Yu. M., “Fluktuatsii v protsesse samoorganizatsii”, Matematicheskie modeli v ekologii, Izd-vo Gorkovskogo un-ta, Gorkii, 1980, 74–82

[23] Kholodniok M., Klich A., Kubichek M., Marek M., Metody analiza nelineinykh dinamicheskikh modelei, Mir, M., 1991, 368 pp.

[24] Khorstkhemke V., Lefevr R., Indutsirovannye shumom perekhody: teoriya i primenenie, Mir, M., 1987, 400 pp. | MR

[25] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh: Mekhanizmy vozniknoveniya, struktura i svoistva dinamicheskogo khaosa v radiofizicheskikh sistemakh, URSS, M., 2009, 320 pp.

[26] Elkin Yu. E., Moskalenko A. V., Starmer Ch. F., “Spontannaya ostanovka dreifa spiralnoi volny v odnorodnoi vozbudimoi srede”, Matematicheskaya biologiya i bioinformatika, 2:1 (2007), 73–81 | MR

[27] Fenton F. H., Evans S. J., Hastings H. M., “Memory in an Excitable Medium: A Mechanism for Spiral Wave Breakup in the Low-Excitability Limit”, Phys. Rev. Let., 83:19 (1999), 3964–3967 | DOI

[28] Petrov I. B., Polezhaev A. A., Shestakov A. S., “Volnovye protsessy v nelineinykh aktivnykh sredakh”, Matematicheskoe modelirovanie, 12:1 (2000), 38–44 | MR | Zbl