Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2010_22_10_a0, author = {S. E. Kurushina and A. A. Ivanov and Yu. V. Zhelnov and I. P. Zavershinskii and V. V. Maximov}, title = {Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--17}, publisher = {mathdoc}, volume = {22}, number = {10}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2010_22_10_a0/} }
TY - JOUR AU - S. E. Kurushina AU - A. A. Ivanov AU - Yu. V. Zhelnov AU - I. P. Zavershinskii AU - V. V. Maximov TI - Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment JO - Matematičeskoe modelirovanie PY - 2010 SP - 3 EP - 17 VL - 22 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2010_22_10_a0/ LA - ru ID - MM_2010_22_10_a0 ER -
%0 Journal Article %A S. E. Kurushina %A A. A. Ivanov %A Yu. V. Zhelnov %A I. P. Zavershinskii %A V. V. Maximov %T Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment %J Matematičeskoe modelirovanie %D 2010 %P 3-17 %V 22 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2010_22_10_a0/ %G ru %F MM_2010_22_10_a0
S. E. Kurushina; A. A. Ivanov; Yu. V. Zhelnov; I. P. Zavershinskii; V. V. Maximov. Spatiotemporal pattern of prey-predator system simulation in external fluctuate environment. Matematičeskoe modelirovanie, Tome 22 (2010) no. 10, pp. 3-17. http://geodesic.mathdoc.fr/item/MM_2010_22_10_a0/
[1] Medvinsky A. B., Petrovskii S. V., Tikhonova I. A., Malchow H., Li Bai-Lian, “Spatiotemporal complexity of plankton and fish dynamics”, SIAM Review, 44 (2002), 311–370 | DOI | MR | Zbl
[2] Liu Quan-Xing, Sun Gui-Quan, Li Bai-Lian, Jin Zhen, Emergence of spatiotemporal chaos driven by farfield breakup of spiral waves in the plankton ecological systems, 2008, arXiv: 0704.0322v3[nlin.PS]
[3] Malchow H., Hilker F. M., Petrovskii S. V., “Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system”, Discrete and Continuous Dynamical Systems Ser. B, 4:3 (2004), 705–711 | DOI | MR | Zbl
[4] Malchow H., Hilker F. M., Sarkar R. R., Brauer K., “Spatiotemporal patterns in an excitable plankton system with lysogenic viral infection”, Math. and Computer Modeling, 42 (2005), 1035–1048 | DOI | MR | Zbl
[5] Malchow H., Hilker F. M., Petrovskii S. V., Brauer K., “Oscillations and waves in a virally infected plankton system. Part I. The lysogenic stage”, Ecological Complexity, 1 (2004), 211–223 | DOI
[6] Malchow H., “Motional instabilities in prey-predator systems”, J. Theor. Biol., 204 (2000), 639–647 | DOI
[7] Garvie M. R., Trenchea C., Analysis of two generic spatially extended predator-prey models, Preprint submitted to Elsevier Science, 2006, 16 pp.
[8] Baurmann M., Gross Th., Feudel U., Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcation, Preprint submitted to Journal of Theoretical Biology, 2006, 18 pp. | MR
[9] Malchow H., “Spatiotemporal pattern formation in nonlinear non-equilibrium plankton dynamics”, Proc. R. Soc. Lond. B, 251 (1993), 103–109 | DOI
[10] Mikhailov A. S., Uporov I. V., “Kriticheskie yavleniya v sredakh s razmnozheniem, raspadom i diffuziei”, UFN, 144:1 (1984), 79–114
[11] Kurushina S. E., Maksimov V. V., “Shumoindutsirovannye fazovye perekhody v protsessakh konkurentsii vo fluktuiruyuschikh sredakh”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 2010, no. 1, 4–16
[12] Scheffer M., “Fish and nutrients interplay determines algal biomass: a minimal model”, OIKOS, 62 (1991), 271–282 | DOI
[13] Satnoianu R. A., Menzinger M., “Non-Turing stationary patterns in flow-distributed oscillators with general diffusion and flow rates”, Phys. Rev. E, 62:1 (2000), 113–119 | DOI | MR
[14] Satnoianu R. A., Menzinger M., Maini P. K., “Turing instabilities in general systems”, J. Math. Biol., 41 (2000), 493–512 | DOI | MR | Zbl
[15] Khaken G., Sinergetika, Mir, M., 1980, 406 pp. | MR
[16] Akhmanov S. A., Dyakov Yu. E., Chirkin A. S., Vvedenie v statisticheskuyu radiofiziku i optiku, Nauka, Gl. red. fiz.-mat. lit., M., 1981, 640 pp. | MR
[17] Rytov S. M., Vvedenie v statisticheskuyu radiofiziku, Nauka, M., 1966, 404 pp.
[18] Klyatskin V. I., Stokhasticheskie uravneniya glazami fizika, Fizmatlit, M., 2001, 528 pp. | MR | Zbl
[19] Stratonovich R. L., Nelineinaya neravnovesnaya termodinamika, Nauka, Gl. red. fiz.-mat. lit., M., 1985, 480 pp. | MR | Zbl
[20] Kurushina S. E., “Analiticheskoe issledovanie i chislennoe modelirovanie kontrastnykh dissipativnykh struktur v pole fluktuatsii dinamicheskikh peremennykh”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 2009, no. 6, 125–138
[21] Kurushina S. E., Ivanov A. A., “Dissipativnye struktury v sisteme reaktsiya-diffuziya v pole multiplikativnykh fluktuatsii”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 18:3 (2010), 85–103
[22] Astashkina E. V., Romanovskii Yu. M., “Fluktuatsii v protsesse samoorganizatsii”, Matematicheskie modeli v ekologii, Izd-vo Gorkovskogo un-ta, Gorkii, 1980, 74–82
[23] Kholodniok M., Klich A., Kubichek M., Marek M., Metody analiza nelineinykh dinamicheskikh modelei, Mir, M., 1991, 368 pp.
[24] Khorstkhemke V., Lefevr R., Indutsirovannye shumom perekhody: teoriya i primenenie, Mir, M., 1987, 400 pp. | MR
[25] Anischenko V. S., Slozhnye kolebaniya v prostykh sistemakh: Mekhanizmy vozniknoveniya, struktura i svoistva dinamicheskogo khaosa v radiofizicheskikh sistemakh, URSS, M., 2009, 320 pp.
[26] Elkin Yu. E., Moskalenko A. V., Starmer Ch. F., “Spontannaya ostanovka dreifa spiralnoi volny v odnorodnoi vozbudimoi srede”, Matematicheskaya biologiya i bioinformatika, 2:1 (2007), 73–81 | MR
[27] Fenton F. H., Evans S. J., Hastings H. M., “Memory in an Excitable Medium: A Mechanism for Spiral Wave Breakup in the Low-Excitability Limit”, Phys. Rev. Let., 83:19 (1999), 3964–3967 | DOI
[28] Petrov I. B., Polezhaev A. A., Shestakov A. S., “Volnovye protsessy v nelineinykh aktivnykh sredakh”, Matematicheskoe modelirovanie, 12:1 (2000), 38–44 | MR | Zbl