Graph representations of the multibody systems dynamics models
Matematičeskoe modelirovanie, Tome 21 (2009) no. 9, pp. 80-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using an example of the snakeboard, a vehicle with four wheels and nonholonomic constraints, the process of construction and verification for the spatial dynamical models of the multibody systems is analyzed. Two approaches for the formal representation of the models: object-oriented, and bond graph based are considered. Energy based similarities between these approaches are analyzed. A description of the bond graph representation for the most general type of constraint is presented. It turned out the resulting total bond graph model of the multibody system dynamics always has exactly a canonical junction structure. This representation has a tight correspondence with our recent object-oriented implementation of the mechanical constraint architecture. As an example Modelica implementation of the joint classes family is investigated. Finally these classes are applied to construct the snakeboard dynamic model.
@article{MM_2009_21_9_a7,
     author = {I. I. Kosenko},
     title = {Graph representations of the multibody systems dynamics models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {80--88},
     publisher = {mathdoc},
     volume = {21},
     number = {9},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_9_a7/}
}
TY  - JOUR
AU  - I. I. Kosenko
TI  - Graph representations of the multibody systems dynamics models
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 80
EP  - 88
VL  - 21
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_9_a7/
LA  - ru
ID  - MM_2009_21_9_a7
ER  - 
%0 Journal Article
%A I. I. Kosenko
%T Graph representations of the multibody systems dynamics models
%J Matematičeskoe modelirovanie
%D 2009
%P 80-88
%V 21
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_9_a7/
%G ru
%F MM_2009_21_9_a7
I. I. Kosenko. Graph representations of the multibody systems dynamics models. Matematičeskoe modelirovanie, Tome 21 (2009) no. 9, pp. 80-88. http://geodesic.mathdoc.fr/item/MM_2009_21_9_a7/

[1] Modelica – a unified object–oriented language for physical systems modeling. Tutorial, Modelica Association, 2000, 52 pp.

[2] Modelica – a unified object–oriented language for physical systems modeling. Language specification, Modelica Association, 2004, 97 pp.

[3] http://www.modelica.org

[4] H. M. Paynter, Analysis and design of engineering systems, The M. I. T. Press, Cambridge, Massachusetts, 1961

[5] D. C. Karnopp, D. L. Margolis, R. C. Rosenberg, System dynamics: modeling and simulation of mechatronic systems, 4th ed., John Wiley Sons, Hoboken, New Jersey, 2006

[6] D. Zimmer, F. E. Cellier, “The Modelica multi-bond graph library”, Proceedings of the 5th International Modelica Conference (September 4–5, 2006, arsenal research, Vienna, Austria, Christian Kral (conference chair), Anton Haumer (program chair)), Arsenal research, Vienna, 2006, 740 pp.

[7] I. I. Kossenko, M. S. Stavrovskaia, “How one can simulate dynamics of rolling bodies via Dymola: approach to model multibody system dynamics using Modelica”, Proceedings of the 3rd International Modelica Conference (November 3–4, 2003, Linköpings universitet, Linköping, Sweden), ed. Peter Fritzson, Linköpings universitet, Linköping, 2003, 440 pp.

[8] I. I. Kosenko, “Realizatsiya kompyuternoi modeli dinamiki sistem tverdykh tel s osvobozhdayuschimi svyazyami”, Matematicheskoe modelirovanie, 18:12 (2006), 95–106 | MR | Zbl

[9] I. I. Kosenko, M. S. Loginova, Ya. P. Obraztsov, M. S. Stavrovskaya, “Multibody systems dynamics: Modelica implementation and bond graph representation”, Proceedings of the 5th International Modelica Conference (September 4–5, 2006, arsenal research, Vienna, Austria, Christian Kral (conference chair), Anton Haumer (program chair)), Arsenal research, Vienna, 2006, 740 pp.

[10] F. M. Dimentberg, Vintovoe ischislenie i ego prilozheniya v mekhanike, Nauka, M., 1965, 200 pp. | Zbl

[11] D. Hestenes, New foundations for classical mechanics, second edition, Kluwer Academic Publishers, New York–Boston–Dordrecht–London–Moscow, 2002, 703 pp. | MR

[12] S. Stramigioli, G. Blankenstein, V. Duindam, H. Bruyninckx, C. Melchiorri, “Power port concepts in robotics. The geometrical-physical approach”, Tutorial at 2003 IEEE International conference on robotics and automation, IEEE, 2003

[13] F. E. Cellier, Continuous system modeling, Springer-Verlag, New York, 1991 | MR | Zbl

[14] A. Mukherjee, R. Karmakar, Modelling and simulation of engineering systems through bondgraphs, Alpha Science International Ltd., 2000

[15] G. Golo, Interconnection structures in port-based modelling: tools for analysis and simulation, PhD thesis, University of Twente, Enschede, The Netherlands, 2002

[16] Dymola. Dynamic modeling laboratory. User's manual. Version 5.3a, Dynasim AB, Research Park Ideon, Lund, 2004, 302 pp.

[17] Dymola. Dynamic modeling laboratory. User's manual. Dymola 6 Additions. Version 6.1, Dynasim AB, Research Park Ideon, Lund, 2007, 287 pp.

[18] A. D. Lewis, J. P. Ostrowski, R. M. Murray, J. W. Burdick, “Non-holonomic mechanics and locomotion: the snakeboard example”, Proceedings of the IEEE international conference on robotics and automation (May, 1994, IEEE, San Diego, USA)

[19] A. V. Borisov, I. S. Mamaev, A. A. Kilin, “Dinamika katyaschegosya diska”, Negolonomnye dinamicheskie sistemy. Integriruemost, khaos, strannye attraktory, Sbornik statei, eds. A. V. Borisov, I. S. Mamaev, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2002, 99–117 | MR

[20] A. S. Kuleshov, “Elementarnoe izlozhenie dinamiki sneikborda”, Mobilnye roboty i mekhatronnye sistemy, Materialy nauchnoi shkoly-konferentsii (Moskva, 17–18 noyabrya 2003), Izd-vo Mosk. un-ta, M., 2004, 159–166

[21] V. Duindam, G. Blankenstein, S. Stramigioli, “Port-based modeling and analysis of snakeboard locomotion”, Sixteenth international symposium on mathematical theory of networks and systems (July 5–9, 2004, Katholieke universiteit, Leuven, Belgium)