Directional percolation of dimer on simple cubic lattice
Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 100-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the model dimer (extended objects of the size 2) of site directional percolation on simple cubic lattice. The percolation threshold is estimated as $p_c=0.27961\pm0.00004$ for unidirectional percolation problem, and $p_c=0.26192\pm0.00004$ for bidirectional percolation problem. The jamming threshold is estimated as $p_\mathrm{jam}=0.827\pm0.002$ for unidirectional percolation problem, and $p_\mathrm{jam}=0.839\pm0.001$ for bidirectional percolation problem.
@article{MM_2009_21_8_a8,
     author = {V. A. Cherkasova and Yu. Yu. Tarasevich},
     title = {Directional percolation of dimer on simple cubic lattice},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {100--107},
     publisher = {mathdoc},
     volume = {21},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_8_a8/}
}
TY  - JOUR
AU  - V. A. Cherkasova
AU  - Yu. Yu. Tarasevich
TI  - Directional percolation of dimer on simple cubic lattice
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 100
EP  - 107
VL  - 21
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_8_a8/
LA  - ru
ID  - MM_2009_21_8_a8
ER  - 
%0 Journal Article
%A V. A. Cherkasova
%A Yu. Yu. Tarasevich
%T Directional percolation of dimer on simple cubic lattice
%J Matematičeskoe modelirovanie
%D 2009
%P 100-107
%V 21
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_8_a8/
%G ru
%F MM_2009_21_8_a8
V. A. Cherkasova; Yu. Yu. Tarasevich. Directional percolation of dimer on simple cubic lattice. Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 100-107. http://geodesic.mathdoc.fr/item/MM_2009_21_8_a8/

[1] G. Grimmet, Percolation, Springer-Verlag, Berlin, 1999 | MR | Zbl

[2] Kh. Kesten, Teoriya prosachivaniya dlya matematikov, Mir, M., 1986, 392 pp. | MR | Zbl

[3] M. Sahimi, Application of Percolation Theory, Taylor Francis, London, 1994

[4] B. I. Shklovskii, A. L. Efros, Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979

[5] Dzh. Zaiman, Modeli besporyadka. Teoreticheskaya fizika odnorodno neuporyadochennykh sistem, Per. s angl., Mir, M., 1982

[6] D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor Francis, 1992, 181 pp.

[7] E. Feder, Fraktaly, Mir, M., 1991 | MR

[8] Yu. Yu. Tarasevich, Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 112 pp.

[9] A. Yu. Dovzhenko, V. A. Bunin, “Vliyanie formy i razmera chastits elektroprovodyaschei fazy na obrazovanie perkolyatsionnogo klastera v keramicheskoi kompozitsii”, Zhurnal tekhnicheskoi fiziki, 73:8 (2003), 123–125

[10] G. Kondrat, A. Pȩkalski, “Percolation and jamming in random sequential adsorption of linear segments on a square lattice”, Phys. Rev. E., 63 (2001), 051108 | DOI

[11] N. V. Vygornitskii, L. N. Lisetskii, N. I. Lebovka, “Perkolyatsiya v modeli sluchainoi posledovatelnoi adgezii anizotropnykh chastits”, Kolloidnyi zhurnal, 69:5 (2007), 597–602

[12] D. A. Matoz-Fernandez, D. H. Linares, A. J. Ramirez-Pastor, “Determination of the critical exponents for the isotropic-nematic phase transition in a system of long rods on two-dimensionalc lattices: Universality of the transition”, Europhysics Letters, 82:5 (2008), 50007 | DOI

[13] N. Vandewalle, S. Galam, M. Kramer, “A new universality for random sequential deposition of needles”, Eur. Phys. J. B, 14 (2000), 407–410 | DOI | MR

[14] G. Pruessner, M. Moloney, “Numerical results for crossing, spanning and wrapping in two-dimensional percolation”, J. Phys. A, 36:44 (2003), 11213 | DOI | MR | Zbl

[15] A. Bunde, S. Havlin, Fractals and Disordered Systems, eds. A. Bunde, S. Havlin, Springer, 1996, 65 | MR

[16] J. Hoshen, R. Kopelman, “Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm”, Phys. Rev. B, 14:8 (1976), 3438–3445 | DOI

[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes In C: The Art Of Scientific Computing, Cambridge University Press, 1992, 994 pp. | MR

[18] Y. Y. Tarasevich, V. A. Cherkasova, “Dimer percolation and jamming on simple cubic lattice”, Eur. Phys. J. B, 60:1 (2007), 97–100 | DOI