Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2009_21_8_a8, author = {V. A. Cherkasova and Yu. Yu. Tarasevich}, title = {Directional percolation of dimer on simple cubic lattice}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {100--107}, publisher = {mathdoc}, volume = {21}, number = {8}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2009_21_8_a8/} }
V. A. Cherkasova; Yu. Yu. Tarasevich. Directional percolation of dimer on simple cubic lattice. Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 100-107. http://geodesic.mathdoc.fr/item/MM_2009_21_8_a8/
[1] G. Grimmet, Percolation, Springer-Verlag, Berlin, 1999 | MR | Zbl
[2] Kh. Kesten, Teoriya prosachivaniya dlya matematikov, Mir, M., 1986, 392 pp. | MR | Zbl
[3] M. Sahimi, Application of Percolation Theory, Taylor Francis, London, 1994
[4] B. I. Shklovskii, A. L. Efros, Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979
[5] Dzh. Zaiman, Modeli besporyadka. Teoreticheskaya fizika odnorodno neuporyadochennykh sistem, Per. s angl., Mir, M., 1982
[6] D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor Francis, 1992, 181 pp.
[7] E. Feder, Fraktaly, Mir, M., 1991 | MR
[8] Yu. Yu. Tarasevich, Perkolyatsiya: teoriya, prilozheniya, algoritmy, Editorial URSS, M., 2002, 112 pp.
[9] A. Yu. Dovzhenko, V. A. Bunin, “Vliyanie formy i razmera chastits elektroprovodyaschei fazy na obrazovanie perkolyatsionnogo klastera v keramicheskoi kompozitsii”, Zhurnal tekhnicheskoi fiziki, 73:8 (2003), 123–125
[10] G. Kondrat, A. Pȩkalski, “Percolation and jamming in random sequential adsorption of linear segments on a square lattice”, Phys. Rev. E., 63 (2001), 051108 | DOI
[11] N. V. Vygornitskii, L. N. Lisetskii, N. I. Lebovka, “Perkolyatsiya v modeli sluchainoi posledovatelnoi adgezii anizotropnykh chastits”, Kolloidnyi zhurnal, 69:5 (2007), 597–602
[12] D. A. Matoz-Fernandez, D. H. Linares, A. J. Ramirez-Pastor, “Determination of the critical exponents for the isotropic-nematic phase transition in a system of long rods on two-dimensionalc lattices: Universality of the transition”, Europhysics Letters, 82:5 (2008), 50007 | DOI
[13] N. Vandewalle, S. Galam, M. Kramer, “A new universality for random sequential deposition of needles”, Eur. Phys. J. B, 14 (2000), 407–410 | DOI | MR
[14] G. Pruessner, M. Moloney, “Numerical results for crossing, spanning and wrapping in two-dimensional percolation”, J. Phys. A, 36:44 (2003), 11213 | DOI | MR | Zbl
[15] A. Bunde, S. Havlin, Fractals and Disordered Systems, eds. A. Bunde, S. Havlin, Springer, 1996, 65 | MR
[16] J. Hoshen, R. Kopelman, “Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm”, Phys. Rev. B, 14:8 (1976), 3438–3445 | DOI
[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes In C: The Art Of Scientific Computing, Cambridge University Press, 1992, 994 pp. | MR
[18] Y. Y. Tarasevich, V. A. Cherkasova, “Dimer percolation and jamming on simple cubic lattice”, Eur. Phys. J. B, 60:1 (2007), 97–100 | DOI