On the stochastical and quasistochastical algorithms parallelisation in modeling problems
Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 80-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

As it is known, the most of the mathematical modelling problems are connected with linear algebraic systems solving. The stochastical and quasistochastical method for L. A. S. solution are analysed in this article. As it turned out this methods are asymptotical optimal in the class of the iteration methods as order of the systems tends to infinity. Besides some modifications of the offered methods possessed properties of unlimited parallelism.
@article{MM_2009_21_8_a6,
     author = {S. M. Ermakov},
     title = {On the stochastical and quasistochastical algorithms parallelisation in modeling problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {80--86},
     publisher = {mathdoc},
     volume = {21},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_8_a6/}
}
TY  - JOUR
AU  - S. M. Ermakov
TI  - On the stochastical and quasistochastical algorithms parallelisation in modeling problems
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 80
EP  - 86
VL  - 21
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_8_a6/
LA  - ru
ID  - MM_2009_21_8_a6
ER  - 
%0 Journal Article
%A S. M. Ermakov
%T On the stochastical and quasistochastical algorithms parallelisation in modeling problems
%J Matematičeskoe modelirovanie
%D 2009
%P 80-86
%V 21
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_8_a6/
%G ru
%F MM_2009_21_8_a6
S. M. Ermakov. On the stochastical and quasistochastical algorithms parallelisation in modeling problems. Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 80-86. http://geodesic.mathdoc.fr/item/MM_2009_21_8_a6/

[1] Baudet G., “Asunchronous iterative methods for multiprocessors”, J. Assoc. Comput. Math., 25 (1978), 226–244 | MR | Zbl

[2] Ermakov S. M., Metod Monte-Karlo i smezhnye voprosy, Izd. 2-e, Nauka, M., 1975, 472 pp. | MR | Zbl

[3] Knut D., Yao E., “Slozhnost modelirovaniya neravnomernykh raspredelenii”, Kiberneticheskii sbornik, Novaya seriya, 19, Mir, M., 1983, 97–158

[4] Ermakov S. M., Danilov D. L., “Asimptoticheskaya slozhnost otsenki po stolknoveniyam dlya resheniya lineinykh sistem”, ZhVM i MF, 37:5 (1997), 515–523 | MR

[5] Ermakov S. M., Danilov D. L., Halton J. H., “Asymptotic complexity of Monte-Carlo methods for solving linear systems”, Elsevier Journ. of statistical planning and inference, 85:1–2 (2000), 5–18 | MR | Zbl

[6] Ermakov S. M., “Dopolnenie k odnoi rabote po metodu Monte-Karlo”, Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 41:6 (2001), 991–992 | MR | Zbl

[7] Halton J. H., “On the efficiency of certain quasi–random sequences of points in evaluating multidimensional integrals”, Numerische Mathematic, 2 (1960), 84–90 | DOI | MR | Zbl

[8] Sobol I. M., Mnogomernye kvadraturnye formuly i funktsii Khaara, Nauka, M., 1969 | MR

[9] Vagner V., Ermakov S. M., “Stokhasticheskaya ustoichivost i parallelizm metoda Monte-Karlo”, DAN, 379:4 (2001), 439–441 | MR

[10] Ermakov S. M., Wagner W., “Monte-Carlo difference schemes for the wave equations”, Monte-Carlo Methods and Appl., 8:1 (2002), 1–29 | DOI | MR | Zbl

[11] Magnus Ya. R., Neidekker Kh., Matrichnoe differentsialnoe ischislenie s prilozheniyami k statistike i ekonometrike, Fizmatlit, M., 2002

[12] Ermakov S. M., Rukavishnikova A., “Quasi-Monte-Carlo algorithms for solving linear algebraic equations”, Monte-Carlo Methods and Appl., 12:5–6 (2006), 363–384 | DOI | MR | Zbl

[13] Ermakov S. M., Nekrutkin V. V., Sipin A. S., Sluchainye protsessy dlya resheniya klassicheskikh zadach matematicheskoi fiziki, Nauka, M., 1984, 206 pp. | MR | Zbl

[14] Mikhailov G. A., Voitishek A. V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Akademiya, M., 2006, 367 pp.

[15] Sabelfeld K. K., Metody Monte-Karlo v kraevykh zadachakh, Nauka, Novosibirsk, 1989, 280 pp. | MR