Game models of network auctions and their laboratory researches
Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 63-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proposed to use the cooperative games theory for the analysis of results of network auctions. The main properties of the cooperative games which model the network markets, such as superadditivity, non-emptiness of the core, convexity are investigated. By means of the theory of cooperative games one of the laboratory network markets, being object of research of the Laboratory of experimental economics of MIPT and CCRAS is analyzed.
@article{MM_2009_21_8_a5,
     author = {I. Menshikov and V. Platonov},
     title = {Game models of network auctions and their laboratory researches},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--79},
     publisher = {mathdoc},
     volume = {21},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_8_a5/}
}
TY  - JOUR
AU  - I. Menshikov
AU  - V. Platonov
TI  - Game models of network auctions and their laboratory researches
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 63
EP  - 79
VL  - 21
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_8_a5/
LA  - ru
ID  - MM_2009_21_8_a5
ER  - 
%0 Journal Article
%A I. Menshikov
%A V. Platonov
%T Game models of network auctions and their laboratory researches
%J Matematičeskoe modelirovanie
%D 2009
%P 63-79
%V 21
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_8_a5/
%G ru
%F MM_2009_21_8_a5
I. Menshikov; V. Platonov. Game models of network auctions and their laboratory researches. Matematičeskoe modelirovanie, Tome 21 (2009) no. 8, pp. 63-79. http://geodesic.mathdoc.fr/item/MM_2009_21_8_a5/

[1] Zhuravel Yu. Yu., Menshikov I. S., Dvoinoi auktsion dlya setevykh rynkov, Soobscheniya po prikladnoi matematike, VTs RAN, M., 2003

[2] McCabe K., Rassenti J., Smith V., “Designing “Smart” Computer-Assisted Markets”, Proceedings of the National Academy of Sciences of the USA, 98 (2001), 678–702 | DOI

[3] Menshikov I. S., Platonov V. V., Chaban A. N., “Laboratornyi analiz setevykh energeticheskikh rynkov”, Trudy 49 nauchnoi konferentsii MFTI, Dolgoprudnyi, M., 2006

[4] Menshikov I. S., Platonov V. V., Skinderev S. A., Chaban A. N., Sravnitelnyi analiz effektivnosti laboratornykh setevykh auktsionov, Soobscheniya po prikladnoi matematike, VTs RAN, M., 2007

[5] Mulen E., Kooperativnoe prinyatie reshenii: aksiomy i modeli, Mir, M., 1991 | MR

[6] Debreu G., Scarf H., “A limit theorem on the core of an economy”, International Economic Review, 4 (1962), 235–246 | DOI

[7] Scarf H., “The core of an $N$ person game”, Econometrica, 35 (1967), 50–69 | DOI | MR | Zbl

[8] Bondareva O. N., “Teoriya yadra v igre $n$ lits”, Vestnik LGU, ser. mat., mekh., astron., 13:3 (1962), 141–142 | MR | Zbl

[9] Menshikova O. R., “O vychislenii obobschennogo $N$-yadra”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 16 (1976), 1121–1135 | Zbl

[10] Menshikova O., Menshikov I., The Generalized Nucleolus as a Solution of a Cost Allocation Problem, IIASA Collaborative Paper CP-83-008, January 1983, 26 pp.

[11] Lijphart A., Electoral Systems and Party Systems, Oxford University Press, Oxford, 1994

[12] Aleskerov F., Platonov V., “Disproportionality indices for PR systems”, Reasoned Choices, The Finnish Political Science Association, Finland, Turku, 2004

[13] Menshikov I. S., Shelagin D. A., Kooperativnoe raspredelenie riskovogo kapitala, Soobscheniya po prikladnoi matematike, VTs RAN, M., 2001