Model of convection in a~rotating spherical layer
Matematičeskoe modelirovanie, Tome 21 (2009) no. 7, pp. 121-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of convection in a rotating spherical layer of a viscous liquid (an external Earth's Core) in Boussinesq approximation is constructed. In equation producing, the field of temperature is expanded on eigen functions of Laplas operator in the layer. The field of speeds is presented by decomposition of toroidal and poloidal components, for which as producing the same functions were used. The selection of modes that can describe the large-scale convection structure comparing with data of the Earth Core is realized. The system of the equations for amplitudes of components of temperature and speed is obtained.
@article{MM_2009_21_7_a10,
     author = {G. M. Vodinchar and B. M. Shevtsov},
     title = {Model of convection in a~rotating spherical layer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {21},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2009_21_7_a10/}
}
TY  - JOUR
AU  - G. M. Vodinchar
AU  - B. M. Shevtsov
TI  - Model of convection in a~rotating spherical layer
JO  - Matematičeskoe modelirovanie
PY  - 2009
SP  - 121
EP  - 128
VL  - 21
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2009_21_7_a10/
LA  - ru
ID  - MM_2009_21_7_a10
ER  - 
%0 Journal Article
%A G. M. Vodinchar
%A B. M. Shevtsov
%T Model of convection in a~rotating spherical layer
%J Matematičeskoe modelirovanie
%D 2009
%P 121-128
%V 21
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2009_21_7_a10/
%G ru
%F MM_2009_21_7_a10
G. M. Vodinchar; B. M. Shevtsov. Model of convection in a~rotating spherical layer. Matematičeskoe modelirovanie, Tome 21 (2009) no. 7, pp. 121-128. http://geodesic.mathdoc.fr/item/MM_2009_21_7_a10/

[1] Rikitaki T., Elektromagnetizm i vnutrennee stroenie Zemli, Nedra, L., 1968, 331 pp.

[2] Yanovskii B. M., Zemnoi magnetizm, Izd-vo LGU, L., 1978, 591 pp.

[3] Dzhekobs Dzh., Zemnoe yadro, Mir, M., 1979, 305 pp.

[4] Parkinson U., Vvedenie v geomagnetizm, Mir, M., 1986, 525 pp. | MR

[5] Reshetnyak M., Steffen B., “Dynamo model in the spherical shell”, Numerical Methods and Programming, 6 (2005), 27–32

[6] Zeldovich Ya. B., Ruzmaikin A. A., Sokolov D. D., Magnitnye polya v astrofizike, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva–Izhevsk, 2006, 384 pp.

[7] Inglis D. R., “Theories of the Earth's magnetism”, Rev. Mod. Phys., 27:2 (1955), 212–248 | DOI | Zbl

[8] Grigorev V. I., Grigoreva E. V., Rostovskii V. S., Baroelektricheskii effekt i elektromagnitnye polya planet i zvezd, Fizmatilit, M., 2003, 192 pp.

[9] Gledzer E. B., Dolzhanskii F. V., Obukhov A. M., Sistemy gidrodinamicheskogo tipa i ikh primenenie, Nauka, M., 1981, 366 pp. | MR | Zbl

[10] Kuznetsov V. V., “Anizotropiya svoistv vnutrennego yadra Zemli”, UFN, 167:9 (1997), 1001–1012 | DOI

[11] Molodenskii S. M., Prilivy, nutatsiya i vnutrennee stroenie Zemli, Nauka, M., 1984, 215 pp.

[12] Monin A. S., Teoreticheskie osnovy geofizicheskoi gidrodinamiki, Gidrometeoizdat, L., 1988, 422 pp.

[13] Kozenko A. V., “Zemlya”, Fizicheskaya entsiklopediya, t. 2, Sovetskaya entsiklopediya, M., 1990, 78–80

[14] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977, 735 pp. | MR

[15] Chandrasekhar S., Hydrodynamics and hydromagnetic stability, Dover Publ. Inc., NY, 1981, 654 pp. | MR